Group J
Space Depot Maintenance

Group Leader
Dr. Robert Shishko, JPL

Group Facilitator
Ms. Sarah James, SOLE

Group Scribe
Ms. Deanna Laufer, MIT
Session Overview

- **Space Depot Maintenance Scope**
 - Discussion expanded to include all space maintenance beyond Remove-and-Replace

- **Goals**
 - Identify and define the impact of space intermediate and depot-level maintenance issues on the three different exploration mission types

- **Organization**
 - Identify the important issues (starter list + attendee participation)
 - Pick the “top 3” issues/topics relevant to each exploration mission type
 - Discuss potential impacts, mitigations and opportunities, early tests/demonstrations, and interfaces to other systems
Discussion Points

- Identification of appropriate tasks and locations for in-space intermediate and depot-level maintenance
- Level-of-repair analysis
 - Analysis techniques for ORLA
 - Data sources
 - ISS experience
- Robotic versus human repair agents
 - Safety and risk issues
- Design for maintainability/serviceability
- Infrastructure and technology requirements for intermediate and depot-level maintenance
- ROI for in-space intermediate and depot-level maintenance
Issues –

Common to all Missions

1. **Issue:** Maintenance Policy is integrated into the Design Process
 Predicted Impact:
 A). Reduces logistics footprint, which reduces TOC, but costs are greater upfront
 B). Optimizes supportability and maintainability

 Potential Mitigation:
 Requires discipline in requirements articulation and acquisition processes

 Possible Solution(s):

2. **Issue:** The Need for Highly Common Spares
 Predicted Impact: Configuration management is critical
 Potential Mitigation: Common interface with equivalent or upgrade functionality

 Impact on Other Systems:
 A). Reduces overall cost requirements which allows for higher probability of funding
 B). Increase of box level cost
 C). Design to a common tool set

 Possible Solution(s): Reprogramming FPGAs for multiple functions
Issues –
Common to all Missions

3. **Issue:** Determination and Requirements for Levels of Repair
 Predicted Impact: Requires assessment of supporting infrastructure
 Potential Mitigation:
 Impact on Other Systems: Human factors (training, culture change, on-flight maintainers, environmental adjustments)
 Possible Solution(s): Small(?) carry-along manufacturing and repair facility

4. **Issue:** Reuse of “Un-needed” Modules
 Predicted Impact: Increased value for cannibalization; fuel storage/backup
 Potential Mitigation:
 Impact on Other Systems:
 Possible Solution(s):
 A). Dedicated lunar to CEV ascent capsules
 B). Land vs. crash allows for raw materials use for parts and storage
Issues –
Not Fully Developed

What are the requirements for a carry-on/depot facility?

- How do you provision the raw materials?
- Is the technology fully mature?
- What are the needed capabilities?
- What are the size constraints?
What can be done at a Space Depot?

- Logistics Activities:
 - Wire repair
 - Fire recovery/restoration
 - Circuit card replacement
 - Cannibalization
 - Seal Repair
 - Plumbing and hydraulic
 - Programming of FPGAs
 - Technology insertion and upgrades
 - Modification applications
 - Reconditioning (filters, batteries)
 - Calibration
 - Recertification/inspections e.g. NDI
 - Nuclear Refueling
 - Intervention Servicing
 - Refueling
 - Structural Repair (welding, sheet metal, polymer bonding)
 - Warehousing and distribution of spares, consumables
What can be done at a Space Depot?

Non-Logistics Activities:

- Pre-cursor development for future human missions
- Research
- Communications