Group G

Space Logistics Network Design

Group Leader
Dr. Diego Klabjan, MIT

Group Facilitator
Mr. William A. (Andy) Evans, USA [SOLE]

Group Scribe
Ms. Christine Taylor, MIT
Session Overview

- **Space Logistics Network Design Scope**
 - The design of the network for space logistics creates a framework for modeling and evaluating different mission scenarios and identifying useful operational plans for execution

- **Goals**
 - Identify the impact of issues related to space logistics network design and how these issues impact each of the three different missions considered
 - What are the driving concerns in space logistics
 - Where do the differences between terrestrial and space logistics arise
Session Overview (cont.)

- Brainstorm relevant issues in space logistics network design
- Expand each issue to discuss
 - Predicted impact of an issue on the logistics network design
 - Potential mitigation of this issue
 - Methods of testing each issue to determine impact on logistics network design
 - Potential impact of an issue on other systems
- A brief review of the three different missions is listed at the end for reference
Discussion Points

- Fuel consideration
 - Pre-positioned propulsive elements (fuel stages)
 - In-space Re-fuelling
 - Pre-packaged fuel components vs. gas-station-like pumps
 - Tracking fuel availability for multiple non-consecutive burns
- Non-expendable vehicles
 - Cyclers and re-usable vehicles require different modeling assumptions
- Multiple time steps
 - Long time horizon and short time steps lead to large-scale problems
 - Benefits vs. Cost of employing multiple time steps
- Connection between surface logistics and in-space logistics
 - How do we interface the different network
Issues -
Short Lunar Mission

1. **Issue: ISRU**
 - **Predicted Impact:** None
 - **Potential Mitigation:**
 - **Testing Methods:**
 - **Impact on Other Systems:**
 - **Possible Solution(s):**

2. **Issue: Reusability**
 - **Predicted Impact:** None
 - **Potential Mitigation:** Refine supply demand models
 - **Testing Methods:** ISS data analysis, perform quality check on data models,
 - **Impact on Other Systems:** Pervasive
 - **Possible Solution(s):** what if analysis of data error

3. **Issue: Readiness Decay**
 - **Predicted Impact:** Loss of required capability requiring a lunar abort and redesign
 - **Potential Mitigation:** Reliability improvement/ system learning curves, improve robustness of transportation systems
 - **Testing Methods:** What if scenarios...Evaluate unmanned elements kept in harsh environments for a period of time
 - **Impact on Other Systems:**
 - **Possible Solution(s):** Redundancy/Maintenance plan
 Issues -
Long Lunar Mission

1. Issue: ISRU
 Predicted Impact: Lose capability of reusing expended elements
 Potential Mitigation:
 Testing Methods: Run scenarios with and without the capability to determine benefit of technology on architecture
 Impact on Other Systems: Surface systems and propulsion systems
 Possible Solution(s): Include refueling capability and account for increased mass to surface required to develop ISRU facilities

2. Issue: Reusability
 Predicted Impact: Potential for a significant decrease in acquisition cost...potential increase in operations and maintenance costs
 Potential Mitigation: Build a number of units
 Testing Methods: Run with and without reusability capability
 Impact on Other Systems: Pervasive
 Possible Solution(s): Utilize what-if analysis to determine how extensively to employ reusability in the architecture

3. Issue: Readiness Decay
 Predicted Impact: Loss of required capability requiring lunar rescue/abort
 Potential Mitigation: Improve reliability and robustness of transportation systems. Utilize system learning curves
 Testing Methods: Evaluate unmanned elements kept in harsh environments for a period of time. Run what-if scenarios to define the impact of a launch
 Impact on Other Systems: Possible critical failure
 Possible Solution(s): Create redundancy in the solution and define a maintenance plan
Issues - Mars Mission

1. Issue: ISRU
 Predicted Impact: Lose capability of reusing expended elements **Same as Long lunar**
 Potential Mitigation:
 Testing Methods: Run scenarios with and without the capability to determine benefit of technology on architecture
 Impact on Other Systems: surface systems and propulsion systems
 Possible Solution(s): Include refueling capability and account for increased mass to surface required to develop ISRU facilities

2. Issue: Reusability
 Predicted Impact: Potential for a significant decrease in acquisition cost . . . increased operations and maintenance cost
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems: Pervasive
 Possible Solution(s): what if analysis of data error

3. Issue: Readiness Decay
 Predicted Impact: Loss of required capability creating a need for abort/contingency plans
 Potential Mitigation: Improve reliability and robustness of transportation systems. Utilize system learning curves
 Testing Methods: Evaluate unmanned elements kept in harsh environments for a period of time. Run what-if scenarios to define the impact of a launch
 Impact on Other Systems: Possible critical failure
 Possible Solution(s): Create redundancy in the solution and define a maintenance plan that was tested during lunar missions
Other Points not Developed

- Need for a robust logistics plan b/c of Murphy
- How does the requirements for manned space craft maintenance effect the logistics/vehicle decisions
- What if scenarios for maintenance—personal skills
- Earth departure stage depot at L1 creates a possible resource for future flights
- Need to list assumptions…not all assumptions that may be necessary are modeled
- Contingencies
- How to account for the need for redundancy/tendency to fail. Can it be more than a post-optimality what if analysis
 - Can we model a different level of repairability for different vehicles through what-if scenarios
- What adjustments to the network model need to be made for the learning curve