Space Exploration Logistics Workshop
17-18 January 2006
Omni Shoreham Hotel, Washington, DC

Group F
Spares Management

Group Leader
Dr. Robert Shishko, JPL

Group Facilitator
Ms. Sarah James, SOLE

Group Scribe
Mr. Matt Silver, MIT
Session Overview

- **Spares Management Scope**
 - A discussion that covers the ‘what, where, when, how many, and how-to’ issues of spares management for exploration missions

- **Goals**
 - Identify and define the impact of spares management issues on the three different exploration mission types

- **Organization**
 - Identify the important issues (starter list + attendee participation)
 - Pick the “top 3” issues/topics relevant to each exploration mission type
 - Discuss potential impacts, mitigations and opportunities, early tests/demonstrations, and interfaces to other systems
Discussion Points

- Design of systems for reliability
- Commonality and re-configurability
- Forecasting failure rates
 - Low density of each ORU
 - Large MTBF
 - Experiential updating (Bayesian techniques?)
 - Multiple lots, sources, and/or blocks
- Level-of-repair analysis
 - Optimal number of repair echelons (O, I, D)
 - Optimal repair-in-space rate
 - Design of ORUs for in-space maintenance
- In-space transportation/storage of spares
Discussion Points

- **Sparing-to-availability (single-echelon)**
 - POS
 - Functional availability
 - Risk-based (PRA required)

- **Optimal multi-echelon distribution of spares inventory**

- **Optimal procurement strategies**
 - Lifetime buy
 - Hedging against supply/demand uncertainty
 - EOQ

- **Managing condemnations**
 - Optimal triage
 - Cannibalization
 - Cost of repairs vs. buy new

- **Inventory tracking/data management**
Issues - Short Lunar Mission

1. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

2. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

3. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

See “Common to All Missions”
1. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

2. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

3. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

See “Common to All Missions”
Issues – Mars Mission

1. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

2. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

3. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

See “Common to All Missions”
Issues –

Common to all Missions

1. Issue: Logistics Engineering is ignored in the Design Phase
 Predicted Impact: Inability to spare and maintain, support costs and risk will soar
 Potential Mitigation: Do Logistics Engineering in the design phase or buy more spares
 Testing Methods: Use simulation and modeling for sparing to availability
 Impact on Other Systems: Individual Missions and short term performance will be sub-optimal while life-cycle will be “more optimal”
 Possible Solution(s): Program Authority must impose logistics considerations in the design phase – “Top Down” Emphasis

2. Issue: Loss of Supplier and Product Line Viability
 Predicted Impact: reduced parts availability and increased cost due to increased demand uncertainty and long lead times
 Potential Mitigation: firm and constrained mission duration
 Testing Methods: Sensitivity analysis and analytical or simulation modeling
 Impact on Other Systems: NA
 Possible Solution(s): A. Consolidation to the organic supply base B. Standardize Interface and Function to allow for upgrade/technology insertion
3. Issue: Lack of integrated hardware/software design and maintenance strategies and policies
 Predicted Impact: Overly rigid designs drive costs up; and dramatically increases risk of catastrophic mission failure
 Potential Mitigation: Increased operational workarounds
 Testing Methods: Efficiency figures of merit
 Impact on Other Systems:
 Possible Solution(s): A. Implementation of a condition-based maintenance policy B. Identify optimal level of repair in space C. Increase use of embedded diagnostics or external testers
Other Points not Developed

- **Is modularity worth it**
 - Decision factors
 - High $ value
 - Critical Items/wear out items
 - Consumables (critical)
 - Fast technology upgrades
 - Decision on a case by case basis
 - Is any level of repair applicable to modular items
 - Impact on demand patterns/needs

- **Increased demands because of obsolescence “failures”**
 - Condition based maintenance
 - Shift in levels of risk (e.g. prevention of failures)
Other Points not Developed

- **Procurement of Spares**
 - Trade Off in $ between spares, provisioning, & technology refresh
 - Probabilistic Estimate of when/How many to buy
 - Full reparable or component of reparable
 - Testing for Compatibility
 - Built in diagnostics
 - Lead time to impact

- **Demand Forecasting**
 - No commonality in standards, types, crew, hazards, STTE requirements in design
 - Goals rather than standards might be unsupportable

- **Focus shift from SCM to provisioning D for S/M/R, sparing to availability etc, doctrine (level of repair & LORA)**