Group E

Technology Impacts on Logistics

Requirements

Group Leader
Dr. Martin Steele, KSC

Group Facilitator
Mr. Anthony Trovato, RTSC [SOLE]

Group Scribe
Ms. Sarah Shull, MIT
Session Overview

- Technology Impacts on Logistics Requirements
 - Breakout Session Goals
 - Identify and define the impacts of technology on the three different types of exploration missions
 - Breakout Session Organization
 - Brainstorm important issues/topics
 - Pick the “top 3” issues/topics and discuss the Predicted Impact, Potential Mitigation, Testing Methods, Impact on Other Systems, and Recommendation(s) relevant to each mission type
Discussion Points

- RFID
- UID Symbology
- Advanced Propulsion
- ISRU
- Low to Zero Boil-off Storage
- In Space Fuel Depots
- Space Tug

What impact might these technologies have on space logistics?
Technology Impacts on Logistics

- Quantity of Supply Mass
- Inventory Management/Awareness
- System Robustness
Issues –
Common to all Missions

1. **Issue:** Quantity of re-supply mass and volume
 Predicted Impact (if resolved): Optimized launch cargo mix, increased allocation of science equip., increased operational effectiveness
 Potential Mitigation: Development of ISRU, Commonality, Repair in-space, Lower level repair
 Testing Methods: Analysis, Modeling, Simulation, Technology Demos
 Impact on Other Systems: Crew processes/time, hardware design/re-design, software complexity, quality control
Details for #1

- Space maintenance – commonality, repair in space
 - Obsolete parts – lifecycle issues
 - Intermediate level maintenance/ assoc. test equipment
 - Automation to reduce dependence on ground
 - Repair at the component level
 - Reusable/repairable vs. Disposable – level of repair analysis

- Reducing launch re-supply
 - Closed Loop Systems/Regenerative ECLSS – impact on the logistics footprint
 - ISRU – In-Situ Resource Utilization - Fuel, Oxidizer, Crew Consumable (H2O, O2, He, H2, N2), Power
 - Advanced Propulsion – Mars Specific
 - Chemical vs. Electric vs. Solar vs. Others?
 - Capability to send cargo separate from crew in a more efficient manner
 - Near zero boil off
Issues –
Common to all Missions Cont.

2. **Issue:** Inventory Management and Logistics Situational Awareness

Predicted Impact (if resolved): Optimized inventory effectiveness, increased knowledge of operational status

Potential Mitigation: Automation - RFID/UID, Information Architecture, Integrated Databases

Testing Methods: RFID DTO

Impact on Other Systems: Stowage, Crew Time, Ground/MCC Resources, Supply Items
Details for #2

- **Automated Inventory Control**
 - RFID, UID
 - Reducing crew overhead (time) for inventory
 - Accuracy and reliability in inventory control

- **Logistics Situational Awareness/ Integrated Log Management**
 - Reconfigurability and Commonality between elements
 - Open Architecture Approach
 - Cognition

- **Human systems interface**
 - Situational Awareness – Info. Kiosk, Hand-held readers, GPS
 - Maintenance – ground support and in-space
Issues –
Common to all Missions Cont.

3. **Issue:** Systems Robustness and Operability (trade off of robustness vs. optimization)

Predicted Impact (if resolved): Improved system performance to reduce logistics impact

Potential Mitigation: Wireless networks, reduction of thermal constraints, FMEA/FRCAS, design for shipping, certification for multiple configurations, standard rack/bag sizes

Testing Methods: Analysis, Simulation, ISS DTO, Testing of in-orbit cryo transfer

Impact on Other Systems: Hardware and software design and testing, materials, launch vehicles
Details for #3

- Wireless Networks - easier to reconfigure
- Reduction of thermal constraints – mechanical devices with a wider range of temps.
- In-Space Fuel Depots/Refueling
 - Low reliability launcher for consumables (fuel, H2O) – risk issues
 - Design to not preclude the ability to refuel in space
- Ability to return failed parts – Failure modes and effects analysis (FMEA) and Failure Reporting Corrective Actions System (FRCAS)