Group D

Logistics Implications (or Inputs) for Space Vehicle Design And Manifesting

Group Leader
Mr. Joe Parrish, Payload Systems Inc.

Group Facilitator
Mr. Anthony Trovato, RTSC [SOLE]

Group Scribe
Ms. Christine Taylor, MIT
Session Overview

Scope

- A discussion that covers the ‘what, where, when, how many, and how-to’ issues of space vehicle design and manifesting to ensure adequate accommodation for logistics

Goals

- Identify and define the key issues and impacts and inputs of logistics on space vehicle design and manifesting — so that these implications can be reflected in design requirements, cost estimates, mission architecture development, etc.

Organization

- Identify the important issues (starter list + attendee participation)
- Pick the “top 3” issues/topics relevant to each exploration mission type
- Discuss potential impacts, mitigations and opportunities, early tests/demonstrations, and interfaces to other systems
Issues - Common to All Mission Types

1. **Issue**: Need to integrate logistics into vehicle design effort from the beginning -- in particular, as mission duration increases and the supply lines get thinner (ISS -> Moon -> Mars)

 Predicted Impact: Lack of integration results in cost overruns, increased crew risk, budget impact/cost overrun, catastrophic failure potential, erosion of program support

 Potential Mitigation: Incorporate logistics, particularly life cycle cost management, up front in the initial design

 Testing Methods: Cost modeling/overall system modeling projections? (Improve cost modeling relationships and code)

 Impact on Other Systems: System pervasive

 Possible Solution(s): Use cost/system performance data to persuade the decision makers – identify short-term benefits, wherever they occur

2. **Issue**: Past systems have had different components perform similar functionality unnecessarily

 Predicted Impact: Reduces supportability. creates duplication of effort, inefficiency, wasted resources…may increase cost of individual pieces

 Potential Mitigation: System level design requirements: commonality, efficiency, interfaces--Balance of optimization across all elements

 Testing Methods: Inspection/ past performance and metrics (improve on shuttle/ISS) and utilize lessons learned

 Impact on Other Systems: Pervasive, requires and inspires collaboration

 Possible Solution(s): Implement top-down system engineering processes
Examples of Accommodating Commonality, Efficiency, etc.

- **Space Vehicle Design Implications**
 - Stowage areas
 - Hatch size
 - Crew resources for inventory tracking and management

- **Carrier Design Implications**
 - Pressurized cargo
 - Unpressurized cargo
 - Heritage from Shuttle, ISS, etc.

- **Manifesting Implications**
 - Consumables/spares estimating
 - Manifesting approaches to accommodate logistics
Issues -
Short Lunar Mission

1. Issue:
 Predicted Impact:
 Potential Mitigation:
 Testing Methods:
 Impact on Other Systems:
 Possible Solution(s):

Accepting the fact that there are multiple short missions, logistics considerations for short lunar missions can be handled as is.
Issues –
Long Lunar Mission

1. **Issue:** Crew Autonomy
 Predicted Impact: Reduce life cycle cost by reducing reliance on ground resources
 Potential Mitigation: Extensive Training-interfaces
 Testing Methods:
 Impact on Other Systems: High impact (increased near-term design cost) on hardware and software design – but failure to provide autonomy requires LOTS of mission controller support (increased long-term operations cost)
 Possible Solution(s):

2. **Issue:** Reusable Infrastructure
 Predicted Impact: Increase in cost across multiple expendable missions
 Potential Mitigation: Open architecture, Reusable infrastructure
 Testing Methods: Utilize simulation and analysis methods to demonstrate broad applicability
 Impact on Other Systems: Reduces mission costs, increases interdependence of systems
 Possible Solution(s): Accumulate and maintain infrastructure at an accessible node in network to minimize access cost; amortize infrastructure across decades, with multiple users

3. **Issue:** System/Component Lifetime
 Predicted Impact: If lifetime too short, major replacement required
 Potential Mitigation: Plan for maintenance and upgrade, cost of minor repair is much less than major replacement
 Testing Methods: Simulation and statistical analysis of cost
 Impact on Other Systems: Increased up-front cost due to modular design, recouped later in lifecycle
 Possible Solution(s): Modular system design for efficient maintenance
1. **Issue:** Crew Survivability…reliability, spares, consumables

 Predicted Impact: Catastrophic failure, loss of crew

 Potential Mitigation: Design redundancy/reliability, provide spares and training for
 Maintenance, medical diagnosis and treatment

 Testing Methods:

 Impact on Other Systems: Ensuring critical spares/consumables to ensure crew survivability
 can potentially dominate Mars mission design

 Possible Solution(s):
Discussion Points

- **Design criteria and requirements to support logistics**
 - Commonality between different sub-systems of same vehicle and across vehicles (elements) for spares
 - Common interfaces

- **Lifecycle cost and figures of merit...use these to drive design**
 - Acquisition vs. Operations cost
 - Expand understanding of lifecycle from lifecycle of individual instantiation to lifecycle design concept
 - Political cycle can drastically affect performance of space systems
 - For logistics to be effective and considered as primary lifecycle costs need to be used

- **Reusable infrastructure**
 - Modularity...etc

- **NASA Organizational Cultural Issues: Top down vs. Systems Engineering (which needs to include logistics/operations) tension between separation of design and operations organization discourages integration**
 - Need Program-level authority to commit to investment and promote discipline

- **Remember that non-technical issues can greatly effect designs!!! (e.g., policy, market projection, sponsor risk tolerance)**

- **Long term view reflected to policy makers (overcome short term)**
 - Show short-term and intermediate-term benefits wherever they can be found – e.g., reduce eI&T cost, reduce inventory, reduce impact of obsolescence

- **Importance of integrating logistics as mission duration increases and the supply line gets thinner**