Group A

RFID & Information Architecture for Remote Logistics

Group Leader
Dr. Olivier deWeck, MIT

Group Facilitator
William A. (Andy) Evans, USA [SOLE]

Group Scribe
Mr. Xin (Mike) Li, MIT
ISS Inventory Management

- Barcode-based (manual) system
- Inventory Management System (IMS)

Communication occurs via Radio Frequency (RF) and is relayed through the RF Access Point located in the LAB.
What is RFID?

- Radio Frequency Identification
- System to read active/passive tags
- Automated asset tracking
Session Overview

- RFID & Information Architecture for Remote Logistics
 - A discussion of the development of interfaces to an open systems architecture to provide asset visibility, accountability and other utility in remote logistics operations.

- Breakout Session Goals
 - Identify and define the impact of topics related to RFID & Information Architecture on the three different types of exploration missions

- Breakout Session Organization
 - Brainstorm important topics
 - Pick the “top 3” issues/topics and discuss the Predicted Impact, Potential Mitigation, Testing Methods, Impact on Other Systems, and recommendation(s) relevant to each mission type
Discussion Points

- **Sensor technology**
 - RFID
 - UID
 - Combination

- **Modular Open Systems Architecture**
 - Middleware
 - Logistics Management System

- **Utility**
 - Asset Visibility
 - Accountability
 - Spatial Orientation
 - Maintenance
EPCglobal Architecture

Layer 4 – App/Solutions
- Real Time Enterprise/Point Apps
- Batch Oriented Enterprise Apps

Layer 3 – Services
- Open, standard based interfaces
- Product Info Resolution Look-up
- Business Process Mgmt
- Analytics, Reports and Notifications
- Enterprise Content Solutions

Layer 2 – Event Mgmt
- Events and Workflow Management
- Events, Messages, Business Rules

Layer 1 – Data Collection & Mgmt
- Data Collection and Management
- Collection, Storage, Smoothing, Filtering, Aggregation

Layer 0 – Devices
- Device Interfaces, Management
- RFID Readers
- Barcode Scanners
- 802.1X APs
- Pocket PC
- Handheld Terminals
- Others
Issues

Common to all Missions

1. Issue: **Criteria for Tagging/Tracking (what and when)**
 - Predicted Impact: Total Asset Visibility, High Costs
 - Potential Mitigation: Increased Inventory, more crew time, large logistics footprint
 - Testing Methods: Pilot projects, Flight Test, Simulation Models
 - Impact on Other Systems: Standardization, Interoperability, Compatibility
 - Potential Solution(s): RFID/UID/Smart Tags/Middleware/Integrated Database/Open Architecture

2. Issue: **Design of Middleware**
 - Predicted Impact: Balanced Information Flow, Data Filtering
 - Potential Mitigation: Decision Support Information, Alerts/Messages
 - Testing Methods: Real RFID Data Analysis
 - Impact on Other Systems: Interoperability, Standardization
 - Potential Solution(s): Solution Vendors

3. Issue: **Durability**
 - Predicted Impact: System Robustness, High Costs
 - Potential Mitigation: Increased Reliability, Lower Maintenance Cost
 - Testing Methods: Tag/Reader Lab Durability Test, Flight Test, Simulation Models
 - Impact on Other Systems:
 - Potential Solution(s): Designed package
4. **Issue: Package vs Cost vs Reliability**
 - Better designed package to increase tag readability
 - Potential Mitigation:
 - Testing Methods: Make recommendation about RFID friendly package design and work with Space supply vendors
 - Predicted Impact: Increased Robustness, Increased Costs
 - Potential Solution(s): Package Design Recommendations

5. **Issue: Reliability / Robustness**
 - Predicted Impact: Increased Costs, System Robustness
 - Potential Mitigation: Built-in Redundancy to increase robustness, supporting both Bar code and RFID Tags, Data Inconsistency
 - Testing Methods: Pilot Projects
 - Impact on Other Systems:
 - Potential Solution(s):
6. Issue: **Human Systems Integration**
 - Improve business process to reduce human factor errors
 - Look at 10-15 years horizon to incorporate active tags, Robotic solutions
 - Well-organized grouping/Procedure Design
 Predicted Impact: Improved operation efficiency, More/less crew time
 Potential Mitigation: Retraining crew for standard procedures
 Testing Methods: Simulations, Pilot Projects
 Impact on Other Systems: Integrated Database
 Potential Solution(s):

7. Issue: **Smart Tags**
 - what data to store/where to store/Limited data bandwith for downlink and uplink
 Predicted Impact: Increased information availability and accuracy, Costs
 Potential Mitigation: Balanced of number of smart tags and data storage
 Testing Methods: Pilot projects and Bandwidth analysis
 Impact on Other Systems: High requirement for Integrated Database/Service Oriented Architecture, Smart data integration capability, Data cache management
 Potential Solution(s): Multiview of data
8. Issue: **Integrated Database/Open Architecture**
 - Consolidate inventory databases, User friendly,
 - Predicted Impact: Increased operation efficiency, reduced costs
 - Potential Mitigation: Data belong to different organization, Standard data dictionary
 - Testing Methods: Develop Database and test for different use cases
 - Impact on Other Systems: Middleware, Open architecture
 - Potential Solution(s):

9. Issue: **Standards**
 - Predicted Impact: Information Exchangeable, Reduced implementation costs
 - Potential Mitigation: Many parties are involved, hard to come
 - Testing Methods:
 - Impact on Other Systems:
 - Potential Solution(s):

10. Issue: **Criticality Analysis**
 - Identify critical space supply for tracking
 - Predicted Impact: If we track everything, system may overloaded.
 - Potential Mitigation:
 - Testing Methods: Pilots and experiment and data analysis, Interviews
 - Impact on Other Systems:
 - Potential Solution(s):
Issues vs Scenarios

<table>
<thead>
<tr>
<th>Issues</th>
<th>Short Lunar</th>
<th>Long Lunar</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Criteria for Tracking/Tagging</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>2. Design of Middleware</td>
<td>L</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>3. Durability</td>
<td>L</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>4. Package vs Costs</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5. Reliability and Robustness</td>
<td>M</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>6. Human Systems Integration</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>7. Smart Tags</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>8. Integrated database/Open Architecture</td>
<td>L</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>9. Standards</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>10. Criticality Analysis</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

High – Medium – Low