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Abstract 

In recent years, an unprecedented level of interest has grown around the prospect of sending 

humans to Mars for the exploration and eventual settlement of that planet. With the signing of 

the 2010 NASA Authorization Act, this goal became the official policy of the United States 

and consequently, has become the long-term objective of NASAôs human spaceflight activities.  

A review of past Mars mission planning efforts, however, reveals that while numerous 

analyses have studied the challenges of transporting people to the red planet, relatively little 

analyses have been performed in characterizing the challenges of sustaining humans upon 

arrival. In light of this observation, this thesis develops HabNet ï an integrated Habitation, 

Environmental Control and Life Support (ECLS), In-Situ Resource Utilization (ISRU), and 

Supportability analysis framework ï and applies it to three different Mars mission scenarios to 

analyze the impacts of different system architectures on the costs of deploying and sustaining 

a continuous human presence on the surface of Mars. 

Through these case studies, a number of new insights on the mass-optimality of Mars 

surface system architectures are derived. The most significant of these is the finding that ECLS 

architecture mass-optimality is strongly dependent on the cost of ISRU ï where open-loop 

ECLS architectures become mass-optimal when the cost of ISRU is low, and ECLS 

architectures with higher levels of resource recycling become mass-optimal when the cost of 

ISRU is high. For the Martian surface, the relative abundance of resources equates to a low 

cost of ISRU, which results in an open-loop ECLS system supplemented with ISRU becoming 

an attractive, if not dominant surface system architecture, over a range of mission scenarios 

and ISRU performance levels.  

This result, along with the others made in this thesis, demonstrates the large potential of 

integrated system analyses in uncovering previously unseen trends within the Mars mission 

architecture tradespace. By integrating multiple traditionally disparate spaceflight disciplines 

into a unified analysis framework, this thesis attempts to make the first steps towards codifying 

the human spaceflight mission architecting process, with the ultimate goal of enabling the 

efficient evaluation of the architectural decisions that will shape humanityôs expansion into the 

cosmos.  
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EDO Extended Duration Orbiter 

EIB Electronic Interface Box 

ELISSA Environment for Life Support Systems Simulation and Analysis 

EMAT Exploration Maintainability Analysis Tool 

EMC Evolvable Mars Campaign 

EMU Extravehicular Mobility Unit 

EOL End Of Life 

ESA European Space Agency 

ESM Equivalent System Mass 

ETHOS Environment and Thermal Operating Systems 

EVA Extravehicular Activity 

EZ Exploration Zone 

FCPA Fluids Control and Pump Assembly 

FDS Fire Detection and Suppression 
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FOM Figure of Merit 

FY Fiscal Year 

GLS Growth Lighting System 

GPL3.0 General Public License 3.0 

GRS Gamma Ray Spectrometer 

HEFT Human Exploration Framework Team 

HIDH Human Integration Design Handbook 

HPGT High Pressure Gas Tank 

HVAC Humidity Ventilation and Air Conditioning 

HX Heat Exchanger 

IMLEO Initial Mass to Low Earth Orbit 

IMV  Intermodule Ventilation 

ISPP In-Situ Propellant Production 

ISRU In-Situ Resource Utilization 

ISS International Space Station 

IVA  Intravehicular Activity 

JSC Johnson Space Center 

KSC Kennedy Space Center 

LED Light Emitting Diode 

LMLSTP Lunar-Mars Life Support Test Project 

LOC Loss Of Crew 

LOR Lunar Orbit Rendezvous 

MAG Maximum Absorbency Garment 

MAV  Mars Ascent Vehicle 

MARCO-POLO Mars Atmosphere and Regolith Collector/PrOcessor for Lander Operations 

MATLAB  Matrix Laboratory 

MCC Mission Control Center 

MEC Modified Energy Cascade 

MEL Master Equipment List 

METOX Metal Oxide 

MF Multifiltration 

MFB Multifiltration Bed 

MIP Mars ISPP Precursor 
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MIT Massachusetts Institute of Technology 

MLS Mostly Liquid Separator 

MOLA Mars Orbiter Laser Altimeter 

MOR Mars Orbit Rendezvous 

MOXIE Mars Oxygen ISRU Experiment 

MRF Microbial Removal Filter 

MRO Mars Reconnaissance Orbiter 

MSFC Marshall Space Flight Center 

MTBF Mean Time Between Failure 

MTTR Mean Time To Repair 

MTV Mars Transit Vehicle 

NASA National Aeronautics and Space Administration 

NFT Nutrient Film Technique 

NIV Nitrogen Interface Valve 

NORCAT Northern Centre for Advanced Technology 

OGA Oxygen Generation Assembly 

OGS Oxygen Generation System 

OIV Oxygen Interface Valve 

OPD Object Process Diagram 

OPL Object Process Language 

OPM Object Process Methodology 

ORA Oxygen Removal Assembly 

ORU Orbital Replacement Unit 

PC Personal Computer 

PCA Pressure Control Assembly 

PCM Pressurized Core Module 

PCPA Pressure Control and Pump Assembly 

PDAM Predetermined Debris Avoidance Maneuver 

PDF Probability Distribution Function 

PDISRU Pre-Deploy In-Situ Resource Utilization 

PDMS polydimethylsiloxane 

PEM Proton Exchange Membrane 

PGA Pressure Garment Assembly 
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PILOT Precursor ISRU Lunar Oxygen Testbed 

PLM Pressurized Logistics Module 

PLOC Probability of Loss of Crew 

PLOM Probability of Loss of Mission 

PLSS Portable Life Support System 

PMF Probability Mass Function 

PMM Permanent Multipurpose Module 

PNNL Pacific Northwest National Laboratory 

PPF Photosynthetic Photon Flux 

ppm parts per million 

PPRV Positive Pressure Relief Valve 

PWD Potable Water Dispensor 

R&R Remove and Replace 

RCA Rapid Cycle Amine 

RESOLVE Regolith & Environment Science and Oxygen & Lunar Volatile Extraction 

RH Relative Humidity 

RO Reverse Osmosis 

ROI Region of Interest 

RP Resource Prospector 

RPCM Remote Power Control Module 

RPM Revolutions Per Minute 

RS Russian Segment (of the International Space Station) 

RSA Rotary / Separator Accumulator 

RWGS Reverse Water Gas Shift 

SCUBA Self-Contained Underwater Breathing Apparatus 

SDTTR Standard Deviation in Time To Repair 

SF Stored Food 

SFWE Static Feed Water Electrolysis 

SMP Semi-Markov Process 

SOCE Solid Oxide CO2 Electrolysis 

SPWE Solid Polymer Water Electrolysis 

SSF Space Station Freedom 

STS Space Transportation System 
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SWME Spacesuit Water Membrane Evaporator 

TCC Trace Contaminant Control 

TCCV Temperature Control Check Valve 

THC Temperature and Humidity Control 

TIMES Thermoelectric Integrated Membrane Evaporation System 

TOC Total Organic Carbon 

TRL Technology Readiness Level 

UCTA Urine Collection and Transfer Assembly 

UI User Interface 

ULD Ultrasonic Leakage Detector 

UPA Urine Processor Assembly 

URL Uniform Resource Locator 

US United States 

USOS United States Orbital Segment 

UTC Universal Coordinated Time 

VCD Vapor Compression Distillation 

VRCV Vent and Relief Control Valve 

VRIV Vent and Relief Isolation Valve 

VS Vacuum Systems 

WEH Water Equivalent Hydrogen 

WHC Waste and Hygiene Compartment 

WM Waste Management 

WPA Water Processor Assembly 

WRM Water Recovery and Management 

WRS Water Recovery System 

WSTA Wastewater Storage Tank Assembly 

XRD X-Ray Diffraction 

XRF X-Ray Fluorescence 

YSZ yttrium-stabilized-zirconia 

Roman Symbols 

a Base length (m) 

A Area (m2) 
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Ar Argon 

b Backup soil level in ISRU hopper 

c carbohydrate fraction of crop dry mass 

C Carbon; Cooling requirement (kW) 

d Diameter (m) 

E Expected value; Mass equivalency used in ESM calculations; Energy (J) 

f fat fraction of crop dry mass; fill factor (%) 

F Probability Density Function 

g PDF of first passage time; Inequality constraints 

G CDF of first passage time 

H Hydrogen; Unconditional waiting time density matrix; height (m) 

I Identity Matrix; System current (Amperes) 

k Counter for the number of times a system has entered an SMP state 

J Objective function 

L Length (m) 

m Mass of individual item (kg) 

M Mass of system (kg) 

n number of spares required; number of moles; number of items 

N Nitrogen; Number of items 

O Oxygen 

p protein fraction of crop dry mass 

P Pressure (kPa); Probability; Power (kW); Pitch (m) 

Q Kernel Matrix 

r Crop static growth rates (g/m2/day); radius (m) 

R Universal Gas Constant; Resource production rate (kg/h); Radius (m) 

S Laplace domain coordinate; Safety margin 

t Time domain coordinate (s); Thickness (mm) 

T Time (h); Temperature (K) 

U Electrolysis cell voltage (Volts) 

v Volume of individual item (m3) 

V Markov renewal process probability; Volume of system (m3) 

w Weighting value (from 0 to 1) 

x Generic variable 



 

 

40 

y Generic variable 

Greek Symbols 

ɖ Efficiency 

 ʟ Time-dependent state probability 

ɛ Log-scale parameter 

ɟ Mass density (kg/m3); Current density (kA/m2) 

ů Shape parameter; standard deviation; Stefan-Boltzmann Constant 

Subscripts 

auger Auger 

B Batch 

c Container 

cond Condensing 

cool Cooling 

D Daylight 

env Ambient environment 

E Electrical; Eclipse 

fail Component failure 

h Heating; Heating rod 

i Generic index 

j Generic index 

p Piping 

PI Active ECLS systems installed in spacecraft racks 

PS Consumables and systems stored within a pressurized environment 

rep Component repair 

resub Resublimation 

s Soil; Sieve 

SA Solar Array 

t Time domain coordinate (s) 

TA Tube Assembly 

U Consumables and systems stored within an unpressurized environment  
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Introduction 

 Background and Motivation 

Since the dawn of the space age, humanity has aspired towards traveling to and settling distant 

worlds. These goals have been motivated by curiosity, the desire for exploration, and the 

promise of new knowledge and discoveries [1]. Of all the possible destinations within our local 

planetary neighborhood, Mars has time and time again been identified as the horizon goal for 

human spaceflight ï the guiding destination for long-range programmatic planning, and the 

next major waypoint in humanityôs expansion into the cosmos [1,2]. 

Given these enduring aspirations, it is not surprising that over the past sixty years, 

numerous Mars mission design studies have been undertaken, each exploring various options 

for transporting humans to and from the red planet (see Figure 1-1).  

While these studies have provided great insight into addressing the challenges of 

transporting people to the surface of Mars, relatively little research has been done in addressing 

the challenges of sustaining them once they get there, particularly for durations greater than 

those of the traditional 30 day short- and 500 day long-stay sortie missions. Recently however, 

research in the domain of long-duration space habitation has gained increasing importance. 

This originated with President Obamaôs signing of the 2010 NASA Authorization Act, which 

for the first time, declared that: 

 

ñThe long term goal of the human space flight and exploration efforts of NASA 

shall be to expand permanent human presence beyond low-Earth orbitò [3] 
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Figure 1-1: Summary of the Major Mars Mission Transportation Studies from 1950 to 2000 

[4] 

 

This goal was reaffirmed in the 2015 NASA Authorization Act, with the statement that: 

 

ñHuman exploration deeper into the Solar System shall be a core mission of the 

Administration. It is the policy of the United States that the goal of the 

Administrationôs exploration program shall be to successfully conduct a crewed 

mission to the surface of Mars to begin human exploration of that planet.ò [5] 

 

In response to this mandate, NASA began conducting a series of studies in 2014 entitled 

the ñEvolvable Mars Campaignò (EMC) [6] with the intent of identifying and developing a 

better understanding of the technological and programmatic challenges of developing a 

permanent human presence on Mars. An important outcome of this effort has been the division 

of the agencyôs crewed Mars exploration program into three distinct phases, each mapping 

directly to a particular region of space between Earth and Mars [7]. As shown in Figure 1-2, 

these phases are: 
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- The Earth Reliant Phase, which revolves around research and technology 

demonstrations onboard the International Space Station (ISS) 

- The Proving Ground Phase, which is based on testing in-space propulsion, and deep 

space habitation and operations within cislunar space; and 

- The Earth Independent Phase, where humans visit locations within the Martian system, 

and validate, deploy, and operate orbital and ground infrastructure that will enable 

repeated crewed expeditions to the surface of Mars. 

As the name of the final phase suggests, the ultimate objective of this program is to develop 

the capability for people to live and work on the surface of Mars in a self-reliant manner ï one 

that is independent from periodic resupply from Earth. As of late 2015 however, most major 

results published by the EMC effort have revolved around decisions related to propulsive 

elements and staging locations for the transportation of crew and cargo to the Martian system 

[8].  

 

 

Figure 1-2: Summary of the NASA Evolvable Mars Campaign [8] 
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In parallel to NASAôs efforts, a number of individuals and private organizations have also 

recently expressed interest in developing systems that would enable the rapid settlement and 

expansion of humans on Mars. These include proposals from Space Exploration Technologies 

Corporation (SpaceX) for a ñMars Colonial Transporterò capable of delivering people to the 

surface of Mars by the mid-2020s [9], Dr. Buzz Aldrinôs plan for attaining human 

ñpermanenceò on Mars based on the use of reusable Earth-Mars ñcyclerò spacecraft as a low-

cost means of transporting crew and cargo through interplanetary space [10], as well as a 

proposal by the Dutch organization, Mars One, to rapidly colonize Mars via a series of 

consecutive one-way missions, each delivering four people to the surface of the planet [11]. 

As is the case with the majority of the past mission studies summarized in Figure 1-1, these 

alternative mission proposals have primarily focused on developing solutions to addressing the 

challenges of mass transportation to the Martian system ï little detail has been presented on 

strategies for addressing the long-term demands of sustaining humans on the Martian surface. 

Thus, the traditional mode of human Mars mission architecting can be characterized as one 

that mainly focuses on the transportation  segment of missions, and invests less effort in 

characterizing the habitation segment of missions. Expressed another way, most previous 

mission studies have focused on the challenges of supplying crew and cargo to different 

mission destinations, but have not dedicated as much effort in characterizing the demands of 

this crew and cargo once they intend to establish a sustained presence at the final intended 

destination. 

This trend overlooks the past 15 years of operational experience in sustaining a continuous 

crewed presence onboard the International Space Station (ISS), where we have observed the 

significant impact of mission support and logistics on program lifecycle cost and sustainability, 

especially as the duration of the program has increased [12]. As future missions venture further 

away from Earth and their frequency of mission abort opportunities decreases, it is expected 

that the demands of the crew, and the lifecycle properties of the systems needed to sustain 

them, will increasingly impact program lifecycle costs [7,12]. 

Motivated by these observations, this thesis develops an integrated habitation analysis tool 

to quantitatively evaluate the impact of technology choices and operational strategies on the 

sustainability and lifecycle costs of future long-duration planetary habitation systems. This 

tool, entitled HabNet, is then applied to a range of ñpermanent presenceò mission scenarios, 

with the objective of identifying enabling and/or dominant technologies and architectures that 

are worthy of further research and development. 
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This goal is based on the premise that understanding the impact of system architecture 

decisions on the demands generated by long duration habitation scenarios and their operational 

costs will better inform near term decisions regarding mission sequencing, operational 

strategies, and technology investment and roadmapping [13].  

 

 Framing the Challenge of Sustaining Continuous 

Human Presence on the Surface of Mars 

1.2.1 The Evolution of Mars Mission Design and Systems 

Architecting Methodologies 

Fundamentally, space mission design is a systems architecting problem ï that is, one that 

involves defining a set of technologies, supporting systems, and operational strategies to 

accomplish a set of functions that together, deliver value to the systemôs stakeholders.  

As a result of this underlying problem structure, all previous Mars mission studies have 

employed systems architecting techniques to some degree of formality. Early Mars mission 

concepts developed during the 1950s and 1960s (see Figure 1-1) were in large part based on 

the experience of the system architect. This tended to result in a rapid convergence on system 

concepts, from which mass and cost estimates were calculated. As the body of knowledge 

surrounding human spaceflight and planetary science grew, space mission architecting began 

to adopt the process of enumerating operational and technological options based on expert 

knowledge, then performing comparative analyses of the costs of feasible combinations of 

selected options. This trend was influenced by the post-World War II birth of systems thinking 

[14], and enabled a deeper understanding of the impact of each component of a spaceflight 

system on its performance as a whole. These architectural options tended to cover major in-

space transportation variables such as the type of trajectories employed, the location at which 

in-space propulsion and habitation elements are aggregated, and the types of propulsion 

systems utilized. Indeed, it was these same variables that characterized the ñmission modeò 

discussions that led to the selection of the lunar orbit rendezvous profile for the Apollo 

program. 
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Figure 1-3: The Apollo Mission Mode Decision that shaped the transportation architecture that 

was adopted by the Apollo Program to transport humans to and from the lunar surface [15] 

 

In 1978, two years after the Viking landers began taking measurements from the Martian 

surface, Ash et al. [16] published a seminal study that introduced the concept of generating 

rocket propellant from the Martian environment as a means of reducing the total mass of human 

missions to Mars. This study represented the first analysis of In-Situ Resource Utilization 

(ISRU) ï the concept of employing locally-derived resources to produce useful consumables 

for a human crew. Shortly thereafter, ISRU became increasingly incorporated in mission 

concepts proposed within the Mars exploration community, frequently appearing in 

presentations given at the ñCase for Marsò conferences held throughout the 1980s [17]. 

In 1990, ISRU gained further recognition when Baker and Zubrin published their ñMars 

Directò mission concept [18]. Similar to that proposed by Ash et al., this concept revolved 

around the production of Mars ascent vehicle propellant by reacting Earth-delivered hydrogen 

with carbon dioxide derived from the Martian atmosphere. This plan later evolved to become 

the first NASA Mars Design Reference Mission (DRM1.0) in 1993 [17,19], which has since 

been iterated upon on multiple occasions with increasingly higher fidelity analysis to form the 

current NASA Design Reference Architecture 5.0 (DRA5.0) [20,21]. 

The introduction of the concept of ISRU added another decision variable to the traditional 

Mars mission architecture tradespace that simultaneously increased its complexity and 

provided potential for more attractive solutions. To structure the analysis of this tradespace, 

NASA began to use decision trees during their DRA5.0 activities. This approach consisted of 

enumerating all conceivable high level architectural options, which in turn allowed individual 
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architectures to be selected, analyzed in-depth, and compared with the performance of other 

previously assessed architectures. Figure 1-4 shows the top-level decision tree developed 

during the NASA DRA5.0 efforts, summarizing key transportation architecture decisions along 

with the architectures assessed during the prior major Mars mission studies.  

 

 

Figure 1-4: NASA DRA5.0 Top Level Architectural Trade Tree [20,21] 

 

In this same period, researchers at MIT began to develop more formal approaches to 

structuring and exploring the Mars mission architecture tradespace. Instead of the traditional 

NASA and industry approach of using expert opinion to select a branch of a decision tree and 

analyzing it in great detail, these researchers proposed algorithms that: (1) structured 

architectural decisions as networks based on their inherent dependency on one another, (2) 

searched for all feasible combinations of architectural decisions from this network structure; 

and (3) evaluated feasible architectures at low- to mid- fidelity to characterize and analyze the 

entire tradespace. 
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One of the key ideas that developed during this period was the notion that systems 

architecting is fundamentally a decision-making process [22,23]. Decisions can be classified 

as those that differentiate architectures, and those that do not. Thus, the process of systems 

architecting was formulated as one that focuses on how architecturally distinguishing decisions 

affect the performance of an architecture. To structure these decisions, Simmons [22] 

developed a representation scheme called the Architecture Decision Graph (ADG) ï a network 

graph that depicts the key architecturally distinguishing decisions that characterize a particular 

architecture, the constraints between these decisions, and the metrics for evaluating the 

architecture that emerges when these decisions are made.  

An example of an ADG for the Apollo mission architecting problem is shown in Figure 

1-5. As can be seen in this figure, the ADG can generally be thought of as a suppressed decision 

tree (see Figure 1-4), in that the types of decisions are shown, but not the options for each 

decision. The advantage of this representation is that coupling and feedback between decisions 

are explicitly represented ï a feature not captured in the serial structure of decision trees. 

 

 

Figure 1-5: Architecture Decision Graph of the Apollo mission mode decision [22] (sm: service 

module, lm: lunar module, EOR: Earth Orbit Rendezvous, LOR: Lunar Orbit Rendezvous, 

IMLEO: Initial Mass to Low Earth Orbit) 

 

Since its introduction, the ADG-approach has been used in concert with morphological 

matrices to study a variety of space systems architecting problems related to human spaceflight. 

Such examples include the architecting of evolvable heavy lift launch vehicle families [24], 




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































