
 1

Multilayer Network Model for Analysis and Management
of Change Propagation

Michael C. Pasqual ! Olivier L. de Weck

Abstract A pervasive problem for engineering change
management is the phenomenon of change propagation by
which a change to one part or element of a design requires
additional changes throughout the product. This paper
introduces a multilayer network model integrating three
coupled layers, or domains, of product development that
contribute to change propagation: namely, the product
layer, change layer, and social layer. A baseline
repository of tools and metrics is developed for the
analysis and management of change propagation using the
model. The repository includes a few novel tools and
metrics, most notably the Engineer Change Propagation
Index (Engineer-CPI) and Propagation Directness (PD),
as well as others already existing in the literature. As
such, the multilayer network model unifies previous
research on change propagation in a comprehensive
paradigm. A case study of a large technical program,
which managed over 41,000 change requests in eight
years, is employed to demonstrate the modelÕs practical
utility. Most significantly, the case study explores the
programÕs social layer and discovers a correspondence
between the propagation effects of an engineerÕs work
and factors such as his/her organizational role and the
context of his/her assignments. The study also reveals
that parent-child propagation often spanned two or more
product interfaces, thus confirming the counterintuitive
possibility of indirect propagation between nonadjacent
product components or subsystems. Finally, the study
finds that most changes did not lead to any propagation.
Propagation that did occur always stopped after five, and
rarely more than four, generations of descendants.

Keywords Engineering change management ! product
development ! change propagation ! multilayer ! network
model ! multiple domains

Acronyms

CAI Change Acceptance Index
CPI Change Propagation Index
CPM Change Prediction Method
CR Change Request
CRI Change Reflection Index
DMM Domain Mapping Matrix
DSM Design Structure Matrix
ECM Engineering Change Management
ESM Engineering Systems Matrix
IPT Integrated Program Team
PAR Proposal Acceptance Rate
PD Propagation Directness
PDSM Propagation Design Structure Matrix
SAP System Adjustable Parameter

1 Introduction

The design of a complex product is rarely, if ever,
straightforward or permanent. In fact, an organization is
practically bound to make design changes throughout the
conception, development, implementation, and operation
of almost any product (Nichols 1990; Pikosz and
Malmqvist 1998). The process of engineering change
management must balance the costs, benefits, and risks of
implementing design changes, in light of their implications
for schedule, budget, and product quality.

A pervasive problem for engineering change
management is the phenomenon of change propagation,
by which a change to one part or element of a design
requires additional changes throughout the product.
Change propagation significantly contributes to the time,

M. C. Pasqual is currently working at MIT Lincoln Laboratory in
Lexington, Massachusetts, USA
e-mail: mpasqual@ll.mit.edu

O. L. de Weck
Engineering Systems Division,
Massachusetts Institute of Technology,
E40-261,77 Massachusetts Ave.,
Cambridge, MA 02139, USA
e-mail: deweck@mit.edu

 2

money, and resources required for evaluating and
implementing changes (Clarkson et al. 2004; Terwiesch
and Loch 1999).

The topic of change propagation has received
considerable research attention over the last decade. The
highlights of the literature include qualitative and
quantitative efforts to characterize, predict, control, and
prevent change propagation. These efforts have primarily
drawn on network-based analyses by modeling products
and change processes as networks of nodes and edges.

1.1 Research Contribution

Building on these contributions, this paper introduces a
multilayer network model integrating three coupled
layers, or domains of product development that contribute
to change propagation: namely, the product layer, change
layer, and social layer. To the authorsÕ knowledge, no
previous research on change propagation has, at least
explicitly, taken a multilayer network approach. The
model proposed here draws on multilayer (or multi-
domain) network approaches already taken in broader
research on product development and project
management.

Using a Venn diagram, Fig. 1 summarizes the research
landscape associated with this research. This paper,
labeled ÒPasqual & de Weck (2011),Ó addresses the gap
at the intersection of research on change propagation and
multilayer network analysis.

1.2 Research Framework

Motivated by this gap, this paper investigates the
following research questions:

¥ What insights can be gained from a multilayer network

model of change propagation?
¥ What are potential tools and metrics for analyzing the

model?
¥ How can the model contribute to the prediction,

prevention, and control of change propagation?

The overarching hypothesis is that a multilayer network
model provides a viable framework for the analysis and
management of change propagation. A baseline
repository of tools and metrics is developed for use with
the model. The repository includes a few novel tools and
metrics, in addition to others already existing in the
literature. As such, the model unifies previous research
on change propagation in a comprehensive paradigm.

Fig. 1 Relevant research landscape

To demonstrate the modelÕs practical utility, this paper
discusses a case study of a large technical program which
managed over 41,000 change requests in eight years.
Giffin (2007) and Giffin et al. (2009) performed earlier
studies of the same program. The case study in this paper
uses an array of multilayer network tools and metrics to
address two important topics. The first topic revolves
around the social layerÕs effects on change propagation;
the investigation reveals interesting aspects of an
engineerÕs performance in the implementation and
proposal of changes. The second topic focuses on the
general characterization of change propagation. The
primary issue discussed here is the counterintuitive
phenomenon of indirect propagation, by which
propagation occurs between nonadjacent product
components. Additionally, the study finds that most
changes did not lead to any propagation in the programÕs
system design. Propagation that did occur always stopped
after five, and rarely more than four, generations of
descendants.

The remainder of this paper is structured as follows.
Section 2 presents relevant background material in the
form of a brief literature review. Section 3 introduces the
multilayer network model of change propagation. A
simple hypothetical example is used to illustrate the
model. Section 4 develops a baseline repository of tools
and metrics for use with the model. Section 5 conducts a
case study to demonstrate the modelÕs practical utility.
Section 6 provides a summary of the research findings and
recommendations for future work.

2 Background

Engineering change management (ECM) is the branch of
configuration management (NASA/SP-2007-6105 R1)
concerned with the identification, evaluation,
implementation, and auditing of changes to the design of a
product or system (Huang and Mak 1999). ECM is a
critical process as changes are inevitable throughout

 3

product development (Nichols 1990; Pikosz and
Malmqvist 1998). While changes theoretically present
opportunities for an organization to improve its products,
satisfy its customers, and stay competitive in its market
(Wright 1997), the ECM process can ultimately consume
considerable time, money, and resources (Terwiesch and
Loch 1999).

2.1 Change Propagation

Among the reasons why changes can be so abundant and
costly is the occurrence of change propagation. Change
propagation can be defined as the Òprocess by which a
change to one part or element of an existing system [or
product] configuration or design results in one or more
additional changes to the system, when those changes
would not have otherwise been requiredÓ (Giffin et al.
2009). In other words, change propagation occurs when
making a single change ultimately requires the
implementation of multiple changes in order to achieve
the objective of the intended redesign.

For clarity1, this research has adopted the term parent-
child propagation to refer to the act of one change (the
parent) yielding an immediate descendant change (the
child). Fig. 2 shows a single change that yields four
generations of descendants through recursive parent-child
propagation. Propagation over this many generations has
been reported in the literature (Clarkson et al. 2004) and
will be reaffirmed in Section 5Õs case study.

Change propagation occurs because of the
interdependencies among the components and
subsystems of modern products and systems (Earl et al.
2005; Suh and de Weck 2007). Eckert et al. (2004)
explains that different parts of a product exhibit different
propagation behavior. Components that are absorbers
tend to internalize changes without causing many
changes to other components. By contrast, multipliers
give rise to more changes than they absorb. Meanwhile,
carriers absorb and cause a roughly equal number of
changes. Finally, constants do not contribute to any
propagation; they are only affected by isolated changes or
do not change at all.

Because of its significant implications for engineering
change management, product development, and business
strategy, the topic of change propagation has received
considerable research attention over the last decade.
Efforts to quantitatively characterize, predict, control, and
prevent change propagation, though limited, have
primarily drawn on network-based models and analyses.

1 Otherwise it can be confusing whether the term ÒpropagationÓ
refers to a single instance or repeated instances of parent-child
propagation.

Fig. 2 In this change network, unidirectional and bidirectional
arrows indicate parent-child and sibling-sibling relationship between
changes, respectively

2.2 Network-based Analysis of Change Propagation

Change propagation research has quite naturally turned to
network-based models and analyses rooted in graph
theory. After all, many aspects of product development
and project management (e.g., products, processes,
organizations) are readily modeled as networks.

At the heart of most previous research on change
propagation is the popular tool known as the Design
Structure Matrix (DSM) (Steward 1980; Eppinger 1994).
A DSM is an adjacency matrix representation of a directed
network. The DSM can be used to represent a product
consisting of interconnected components, a process
consisting of tasks, or an organization consisting of
people. The DSM concept has proven extremely
influential in the quantitative investigation of change
propagation. For instance, Clarkson et al.Õs (2004)
Change Prediction Model (CPM) uses the DSM
representation of a product to trace potential propagation
paths among its interconnected components. Similarly,
Giffin et al. (2009) extend the DSM concept to create the
Component Propagation DSM (Component-PDSM) to
identify instances of change propagation from one
component to another.2 In kind, one can calculate the
Change Propagation Index (CPI), which quantifies a
componentÕs propagation behavior by comparing the
numbers of changes that propagate in and out of that
component (Suh and de Weck 2007; Giffin et al. 2009).

Despite the progress of change propagation research to
date, a new approach, specifically a multilayer network
one, may be beneficial to the field. Broader literature on
product development and project management has
emphasized the existence of multiple network layers, or
domains, in an engineering endeavor, including product,
process, and social layers. To date, change propagation
research has not, at least explicitly, taken a multilayer
network approach. To be fair, tools and metrics like the
Component-PDSM and CPI are arguably double-layer
approaches, since they do consider both the product layer
and change (i.e., process) layer. Still, other contributions
like the DSM and CPM rely on a single-layer model of the

2 Giffin et al. (2004) actually names this tool the Change DSM or
DDSM, but this paper substitutes the word ÒpropagationÓ for
ÒchangeÓ to help distinguish it from a DSM used to represent a
change network.

 4

design and change layers, respectively. Moreover,
change propagation research surprisingly has yet to
investigate the social layer in a substantially quantitative
way. Nevertheless, the literature has at least qualitatively
stressed the significance of teamwork, individual skills,
and system awareness in the ECM process (Huang and
Mak 1999; Jarratt et al. 2005).

2.3 Multilayer Network Approaches

Multilayer, or multi-domain, network approaches are
prevalent in the literature on product development and
project management. The premise of these approaches is
that the success of product development depends
significantly on the interactions within and among the
various domains (e.g., product, process, social, etc.) of
the development effort.

For example, Danilovic and Browning (2007) propose
a variation of the DSM called the Domain Mapping
Matrix (DMM), which captures the dependencies
between different domains of product development,
including the product design, development process, and
development organization. BartolomeiÕs (2007)
Engineering Systems Matrix (ESM) augments the DSM
even further. The ESM incorporates several domains
(e.g., technical, functional, process, social, and
environmental) into a single adjacency matrix
representing edges within and between nodes in each
domain. By grouping the nodes by domain, the ESM
essentially contains DSMs on the diagonal and DMMs in
the upper and lower triangles. Finally, Eppinger (2001)
advocates a multi-domain model most analogous to the
one proposed in this paper. He specifically investigates
whether interactions within the product, process, and
organization domains tend to follow a common,
predictable pattern (Morelli et al. 1995, Sosa et al. 2000,
Eppinger 2001; Sosa et al. 2007).

Thus, the stage is set for further analysis of product
development using a multilayer network approach. This
paper extends the approach to the analysis and
management of change propagation.

3 Multilayer Network Model of Change Propagation

This section introduces a multilayer network model of
change propagation. The model is composed of three
layers that contribute to change propagation: the product
layer, change layer, and social layer. As illustrated in
Fig. 3, the multilayer network model provides an intuitive
and insightful representation of change propagation and
the overall engineering change management process.
That is, engineers in the social layer work on changes in
the change layer that affect components in the product

layer. The multilayer network model captures the
interactions within and across the product layer, change
layer, and social layer.

3.1 Elements of the Model

Each layer of the multilayer network model consists of a
distinct, directed network composed of nodes connected
by intra-layer edges.

3.1.1 Product Layer

The product layer is a network representation of the
product or system being designed. The nodes of the
network represent hardware components, software
components, and associated documentation (e.g.,
requirements, specifications, and drawings). The (intra-
layer) edges of the network represent technical interfaces
among the components (or subsystems). The interfaces
can be physical connections (e.g., by bolts or welding) or
channels for the flow of energy (e.g., electrical power and
heat), mass (e.g., fuel), and information (e.g., software
inputs/outputs and control signals such as actuator
commands) (Suh and de Weck 2007). If a technical
interface has direction (e.g., in the case of a flow channel),
the edges can be directed. An edge might also identify a
functional dependency that relates design variables to a
desired performance level (e.g., in an optical system,
image resolution is a function of aperture diameter).

Fig. 3 Multilayer network model

 5

3.1.2 Change Layer

The change (or process) layer is a network representation
of change propagation. The nodes of the network
represent individual changes or change requests (CRs).
The (intra-layer) edges of the network represent
propagation relationships among the changes. As in Fig.
2 and Giffin et al. (2009), directed edges can identify
parent-child relationships, while bi-directional edges can
identify sibling relationships between children of the
same parent, or two changes related in a significant way.

3.1.3 Social Layer

The social layer is a network representation of the
organization. The nodes of the network represent people,
e.g., teams, sub-teams, or individual engineers or
employees. The (intra-layer) edges of the network
represent various relationships among individuals and
groups. For example, the edges might correspond to
theoretical or actual communication links (Morelli 1995).
The edges might also reflect an organizationÕs
hierarchical structure or chain of command.

A possible augmentation to all these intra-layer edge
definitions is a measure of edge strength. After all, a
strong connection between nodes might exhibit different
behavior than a weaker connection. For example, Sosa et
al. (2000) uses a five-point scale to denote the criticality
of interactions among product components, according to
whether the interaction is required (+2), desired (+1),
indifferent (0), undesired (-1), or detrimental (-2) to the
functionality of the product. Their case study of the
development of a commercial aircraft engine found that
strong technical interfaces in the engine, compared to
weaker ones, more often elicited communication in the
corresponding organization domain. Consequently, it
might be useful to incorporate edge strength into the
multilayer network model, if an objective and consistent
quantification scheme is employed.

3.1.4 Inter-layer Edges

The other half of the multilayer network model consists
of the inter-layer edges that essentially link the three
layers together. Unlike the intra-layer edges, the inter-
layer edges are nominally undirected (or essentially,
bidirectional). The inter-layer edges represent the critical
relationships between the layers of the model:

¥ Social-to-change edges relate the social layer to the

change layer, depending on which engineers work on
(e.g. propose, evaluate, approve, or implement) each
change. If engineer m works on change n, then an

inter-layer edge would connect node m in the social
layer and node n in the change layer.

¥ Change-to-product edges relate the change layer to the
product layer, depending on which component is
affected by each change. If change n involves a
redesign of component k, then an inter-layer edge
would connect node n in the change layer and node k in
the product layer.

¥ Product-to-social edges relate the product layer to the
social layer, depending on which engineers are in
charge of designing, redesigning, or sourcing each
component. If engineer m is assigned to component k,
then an inter-layer edge would connect node m in the
social layer and node k in the product layer. Fig. 3
does not illustrate the product-to-social edges, but they
could be included, if desired.

In some scenarios, such as the cases studied by Eppinger
(2001), a one-to-one mapping exists between the product,
change, and social layers. In other words, engineer m is in
charge of component m and, consequently, engineer m
implements all changes that affect component m. Such a
mapping facilitates easier analysis and interpretation.
However, other scenarios might have engineers focusing
on various overlapping areas of the product at once. For
instance, the program in Section 5Õs case study notably
had individual engineers working on multiple changes
involving multiple areas of the system.

3.2 Data Requirements

The construction of a multilayer network model requires
detailed information about the product development effort
under investigation. Table 1 summarizes the type of data
needed to construct each model element described in
Section 3.1.

Table 1 Data requirements for different elements of the multilayer
network model

Model Element Data Required
Product Layer Identified components
Change Layer Identified changes Nodes
Social Layer Identified engineers

Product Layer Documented interfaces
between components

Change Layer Documented propagation
relationships among changes

Intra-
Layer
Edges

Social Layer Documented communication
among engineers

Social-to-Change Record of engineer who
worked on each change

Change-to-Product Record of component
affected by each change

Inter-
Layer
Edges

Product-to-Social Record of engineer in charge
of each component

 6

As shown in Table 1, the multilayer network model is a
data-driven approach to the analysis and management of
change propagation. Of course, different amounts and
types of data are available at different stages of product
development. As such, the multilayer network model has
different utility at different stages, i.e., before, during,
and after product development. Before product
development, complete data on the nodes and edges will
likely not exist, because all the components, change
requests, engineers, and their relationships will not have
manifested themselves yet. However, some insight may
be gained by modeling analogous development efforts
from the past, especially since most products are
adaptations of predecessor products (Giffin et al. 2009).
Later, during product development, data can be
progressively collected through configuration
management, which allows the construction of a
multilayer network model with whatever fidelity and
completeness that the organization wishes. Analysis of
the model during product development can be used to
guide change impact analysis, organization structuring,
design strategy, and human resource management.
Finally, after product development, analysis of the
multilayer network becomes a lessons-learned effort. At
this stage, an organization can use all the data collected
over the course of product development to assess its
performance in retrospect. Moreover, the data then
become useful for academic research to further
investigate industryÕs experience with change
propagation.

3.3 Hypothetical Application

A hypothetical application should illustrate how to
construct a multilayer network model for a given product
development effort.

Suppose three engineers, John, Susan, and David, are
designing a Sallen-Key low-pass filter (Fig. 4) using two
resistors (R1 and R2), two capacitors (C1 and C2), and a
unity-gain amplifier. The amplifier has already been
purchased. John is in charge of choosing the resistors,
Susan is in charge of choosing the capacitors, and David
is in charge of setting performance requirements, i.e.,
cutoff frequency (! c) and quality factor (Q). The
resistors (in ohms) and capacitors (in farads) determine
the low-pass filterÕs performance (! c in Hz and Q
unitless) according to Eq. 1 and Eq. 2.

Fig. 4 Sallen-Key low-pass filter to be designed

Fig. 5 Multilayer network model of the low-pass filter example

 Eq. 1

 Eq. 2

Suppose the low-pass filter has been designed to have a
baseline cutoff frequency of ! c = 10 kHz, and quality
factor Q = 0.5 (i.e., critically damped), per DavidÕs initial
performance requirements. However, some changes
become necessary. David decides that the cutoff
frequency should be 5 kHz instead of 10 kHz (change #1),
but that the quality factor should remain at Q = 0.5. To
facilitate this requirements change, the team initially plans
for John to change R1 (change #2), but that change is
rejected because the resistors have already been ordered.
Consequently, Susan must reselect the capacitors. Susan
realizes that she cannot simply change one of the
capacitors to accomplish the task of reducing ! c while
maintaining the same Q. In effect, the change to one
capacitor will propagate, causing the other capacitor to
change as well. Susan ultimately decides to double the
original capacitances of C1 (change #3) and C2 (change
#4) to reduce ! c by a factor of two (10 kHz to 5 kHz)
while maintaining Q = 0.5.

Fig. 5 shows the multilayer network model
corresponding to this hypothetical application. The model
captures all the elements of the change activity that
occurred. The social layer contains nodes for John, Susan,
and David, with edges representing their communication
links. The change layer contains nodes for changes #1-4
with edges representing propagation relationships. The
edges indicate that change #1 had two children: change #2
(rejected) and change #3 (accepted) which also had a child
in change #4. The product layer contains nodes for
requirements and electrical components, with edges
representing technical constraints. All the nodes in the
product layer are connected to one another because ! c, Q,
R1, R2, C1, and C2 all depend on one another through Eq. 1

 7

and Eq. 2. The inter-layer edges in Fig. 5 complete the
story. The social-to-change edges represent how David,
John, and Susan worked on changes #1, #2, and #3-4,
respectively. The change-to-product edges represent how
change #1, #2, #3, and #4 affected ! c, R1, C1, and C2,
respectively. For visual ease, Fig. 5 does not show any
product-to-social edges. However, if drawn, these edges
would represent how John, Susan, and David were in
charge of R1 and R2, C1 and C2, and ! c and Q,
respectively.

4 Multilayer Network Tools and Metrics

This section presents a baseline repository of tools and
metrics applicable to the multilayer network model. The
model creates a framework for an array of potential tools
and metrics for analyzing and managing change
propagation. Tools here refer to methods for analyzing or
visualizing the nodes and edges of the model, while
metrics refer to quantitative or quantitative measures for
characterizing them. Any use of the multilayer network
model will focus on one layer alone or multiple layers
simultaneously. Consequently, it is useful to consider
any tool or metric as being single-layer, double-layer, or
triple-layer in origin, depending on the number of layers
being invoked.

4.1 Baseline Repository

Table 2 summarizes a baseline repository of tools and
metric by categorizing each time according to the specific
layer or layers it targets. The displayed matrix has a row
and column for each layer of the model. As such, the
items located along the diagonal are single-layer tools
and metrics for the corresponding individual layer. The
items in the upper-right triangle are double-layer tools
and metrics for the corresponding pairs of layers.
Finally, the items in the lower left triangle are triple-layer
tools and metrics for all three layers at once.

As denoted by references, the repository in Table 2
contains many tools and metrics that have already been
proposed and utilized in the literature on change
propagation, product development, and project
management. Although past researchers did not always
explicitly classify their work in a multilayer context, their
contributions are easily incorporated into the multilayer
network model. Consequently, the multilayer network
model serves as a comprehensive paradigm that unifies
past research in a common framework.
Table 2 also contains a few new tools and metrics (marked
with a Ò*Ó) that are being proposed for the first time in this
paper. Among these are the Engineer Propagation DSM
(a double-layer tool) and the Engineer Change

Propagation Index (a double-layer metric), which aim to
quantitatively analyze the social layerÕs influence on
change propagation. Another new metric in the repository
is Propagation Directness (a double-layer metric) which
counts the number of interfaces spanned by an instance of
parent-child propagation.

4.2 Data Requirements for Tools and Metrics

As discussed in Section 3.2, the construction of a

multilayer network model requires data collection and
mining. Table 3 specifies types of data (i.e., elements of
the model) needed to exercise any of the multilayer
network tools and metrics in practice. Such data mining
can occur after completion or, better yet, during product
development. The displayed matrix has a row for each
tool or metric and a column for each type of intra-layer
and inter-layer edge. Check marks (!) denote which edge
data would be required for each tool and metric. For
example, to construct a DSM for a given layer, an
organization would need to know the intra-ledges for that
layer. To construct a Component-PDSM, an organization
would need the intra-ledges of the change layer (i.e.,
propagation relationships) and the change-to-product
inter-layer edges (i.e., which changes affect which
components). Intuitively, single-layer tools and metrics
only require intra-layer edges. By contrast, the double-
layer and triple-layer tools all tap into the inter-layer edges
as well, because they focus on multiple layers
simultaneously.

The following subsections develop the baseline
repository of tools and metrics, both old and new. Sections
4.3, 4.4, and 4.5 review the single-layer, double layer, and
triple-layer tools and metrics, respectively, that already
exist in the literature. Section 4.6 discusses the additional
tools and metrics that are being proposed for the first time
in this paper. Each tool and metric, old and new, is
critically evaluated in terms of its implications for the
analysis and management of change propagation in context
of the multilayer network model.

4.3 Single-Layer Tools and Metrics

Single-layer tools and metrics focus on one layer of the
multilayer network model at a time. These tools and
metrics highlight intra-layer characteristics of great
significance for engineering change management. The
single-layer metrics (graph properties and node attributes),
in particular, have been employed in the change
propagation literature, but without any formal
development. This discussion hopes to officially establish
their utility for future research.

 8

Table 2 Baseline repository of tools and metrics for the multilayer network model

 Product Change Social

P
ro

du
ct

Tools
¥ Design Structure Matrix (1)
¥ Change Prediction Model (2)

Metrics
¥ Graph properties (3)
¥ Node attributes, e.g., component

class (5)

Tools
¥ Domain Mapping Matrix (4)
¥ Component Propagation DSM (5)
¥ Change Prop. Frequency Matrix (5)

Metrics
¥ Component Change Propagation Index (5, 6)
¥ Change Acceptance/Reflectance Rate (5)
¥ Propagation Directness*

Tools
¥ Domain Mapping Matrix (4)
¥ Alignment Matrix (7)

C
ha

ng
e

Tools
¥ Design Structure Matrix (1)
¥ Change motifs (5)

Metrics
¥ Graph properties (3)
¥ Node Attributes, e.g., approval status (5),

magnitude (5)

Tools
¥ Domain Mapping Matrix (4)
¥ Engineer Propagation DSM*

Metrics
¥ Engineer Change Propagation Index*
¥ Proposal Acceptance Rate (8)

S
oc

ia
l

Tools
¥ Engineering System Matrix (9)

Metrics
¥ Graph properties (3)

Tools
¥ Design Structure Matrix (1)

Metrics
¥ Graph properties (3)
¥ Node attributes, e.g., organizational

role*

(1) Steward 1981
(2) Clarkson et al. 2004
(3) Newman 2003
(4) Danilovic and Browning 2007
(5) Giffin et al. 2009

(6) Suh and de Weck 2007
(7) Sosa et al. 2007
(8) Giffin 2007
(9) Bartolomei 2007
* Proposed first in this paper

Single-layer Double-layer Triple-layer

Table 3 Edge data required for multilayer network tools and metrics

Intra -Layer Edges Inter -Layer Edges

 Product Layer
(technical
interfaces)

Change Layer
(propagation
relationships)

Social Layer
(comm.
links)

Social-
to-

Change

Change-
to-

Product

Product-
to-

 (fSocial
DSM (for each layer) ! ! !
CPM ! Tools
Change Motif !

Single-
Layer

Metrics Graph properties (for
each layer) ! ! !

DMM (for each pair of
layers) ! ! !

Component PDSM ! !
CPFM ! !
Product DSM/
Component PDSM
Overlay

! ! !

Alignment Matrix ! ! !

Tools

Engineer PDSM ! !
Propagation Directness ! ! !
Component-CPI ! !
CAI/CRI !
Engineer-CPI ! !

Double-
Layer

Metrics

PAR !
Tools ESM ! ! ! ! ! ! Triple -

Layer Metrics Graph properties ! ! ! ! ! !

 9

Fig. 6 The DSM succinctly shows where edges exist in a network

4.3.1 Design Structure Matrix (DSM)

The primary single-layer tool from previous research is the
DSM, which, as mentioned in Section 2.2, is a convenient
matrix representation of a network (Steward 1981;
Eppinger et al. 1994). As illustrated in Fig. 6, a DSM is a
square matrix in which element (m, n) indicates whether a
directed edge connects node n to node m.

One can create a separate DSM for each layer of the
multilayer network model, i.e., a Product DSM, Change
DSM, and Social DSM. Clustering algorithms (Browning
2001) exist to manipulate the rows and columns of a DSM
to help identify groups (or clusters) of tightly coupled
nodes, e.g., subsystems in the product layer, families of
changes in the change layer, and teams or communication
structures in the social layer. The DSM has significant
implications for engineering change management. An
organization can exploit each layerÕs DSM to inform better
engineering and managerial decision, thus minimizing
unnecessary future changes and stemming change
propagation. For example, the Product DSM can guide
design architecture decisions in anticipation of the
challenges of testing, building, integrating, and evolving a
product (e.g., automobiles, Suh and de Weck 2007).
Likewise, based on the Social DSM, a project manager
might organize and co-locate teams to facilitate better
communication. Such strategies are vital to engineering
change management, as Eckert et al. (2004) suggests that
insufficient communication is a primary cause of redesigns
throughout product development.

4.3.2 Change Prediction Model (CPM)

As mentioned in Section 2, CPM is a single-layer tool
developed for predicting the occurrence of change
propagation. The tool focuses specifically on the product
layer. CPM uses the Product DSM to identify potential
propagation paths between components, under the
assumption that changes propagate along the technical
interfaces of a product. The final product of the tool is a
risk matrix indicating the likelihood and impact of
propagation between each and every component in the
product (Clarkson et al. 2004). Another element of the

CPM tool is a set of visualization techniques for viewing
potential propagation paths (Keller et al. 2005).

4.3.3 Change Motifs

Giffin et al.Õs (2009) change motif analysis is another
single-layer tool that focuses on the change layer alone.
The premise here is that change networks can be
decomposed into motifs, or building blocks, each with
distinct patterns of changes and propagation relationships.
Motif distributions reveal what types of propagation
patterns are dominant in a product.

4.3.4 Graph Properties

Several single-layer metrics already exist in the literature
as well. For starters, graph theory (Diestel 2006) provides
a number of properties generally applicable to any layer of
the multilayer network model. For example, the
clustering coefficient is a graph property that measures
how much a networkÕs nodes tend to cluster together
(Newman 2003). In the product layer, the clustering
coefficient roughly relates to a productÕs modularity.
Integrative products, which have relatively high clustering
coefficients, may be more susceptible to change
propagation, since their components are more
interdependent. Another potentially useful graph property
is centrality, which is a gauge of the importance of a node
in a network. One measure of a nodeÕs centrality is its
degree, or the number of edges incident upon it (Newman
2003). In the product layer, a componentÕs centrality may
reflect its potential propagation behavior. Namely,
components with higher centrality might be more involved
in change propagation, as parents or children.

4.3.5 Node Attributes

Node attributes constitute another set of single-layer
metrics. Node attributes refer to qualitative or quantitative
measures of a node, other than nodal graph properties.
The attributes of a node might influence its contributions
to change phenomena.

Nodes attributes in the product layer describe the
product components. For example, one node attribute is
component class, i.e., whether a component is hardware,
software, or documentation. Different component classes
might exhibit different change propagaton behavior. In
the program from Section 5Õs case study, the requirements
document was naturally a strong multiplier, because this
component essentially recorded changes to system
requirements, which (almost) always led to redesigns
among the various technical parts of the system. By

 10

contrast, certain software algorithms behaved as constants,
because altering them was cost and time prohibitive.

Changes (i.e., nodes) in the change layer might be
described by nodes attributes such as magnitude (in terms
of time and resources consumed) and approval status (i.e.,
whether the change is accepted, rejected, or pending).
Giffin et al. (2009) found that high-magnitude changes
were more likely to be approved than low-magnitude ones
because many of the low-magnitude change requests were
deemed to be non-essential. Others attributes in the
change layer include process time and cost.

Finally, node attributes in the change layer describe
individual engineers (or teams). For instance, engineers
have various organizational roles (e.g., specialists, team
lead, systems engineer, or manager), which will likely
impact his or her responsibilities in the engineering change
management process. Section 5Õs case study will
quantitatively elaborate on this relationship further.

4.4 Double-Layer Tools and Metrics

Double-layer tools and metrics focus on two-layers
simultaneously by taking into account the inter-layer edges
between them.

4.4.1 Domain Mapping Matrix (DMM)

The first notable double-layer tool is Danilovic and
BrowningÕs (2007) DMM. As introduced in Section 2, the
DMM is a matrix representation of the dependencies
between two domains. In the language of this paper,
element (m, n) of the DMM indicates whether an inter-
layer edge exists between node m in the former layer and
node n in the latter. A DMM can be created for any pair
of layers in the multilayer network model. Danilovic and
Browning argue that the DMM can help an organization
make better decisions in light of these inter-layer
dependencies. For example, they explain how a multi-
project business might cluster a project-to-organization
DMM to identify ways to coordinate its projects with its
organizationÕs technical competencies. Likewise, the
program in Section 5Õs case study restructured its
organization based on similar logic. In the middle of
system development, the program created integrated
program teams (IPTs), each of which united the designers,
testers, and integrators for a particular software segment.
Before this restructuring, these people were
disadvantageously dispersed in the organization.
Interestingly, this strategic move led to a surge of change
requests, because the multidisciplinary IPTs fostered better
communication between people dealing with the same
parts of the system. The IPTs unsurprisingly discovered a
large number of problems with initial design decisions.

Thus, DMM-type strategies can have significant
implications for engineering change management.

4.4.2 Component Propagation DSM

Another double-layer tool from the literature is the
Component Propagation DSM (Component-PDSM) (also
called the Òchange DSMÓ by Giffin et al. 2009). As
introduced in Section 2.2, a Component-PDSM is a square
matrix in which element (m, n) indicates whether a parent
change in the instigating component n spawned a child
change in the affected component m. As such, a
Component-PDSM combines the change layerÕs intra-
layers (to find instances of parent-child propagation) with
the change-to-product inter-layer edges (to determine
which two product components were affected by the
parent and child changes). The Component-PDSM
provides a great visual account of propagation activity.
Fig. 7 shows a hypothetical Component-PDSM, which
indicates, for example, that a change propagated from
component #1 to component #2.

4.4.3 Change Propagation Frequency Matrix (CPFM)

A useful derivative of the Component-PDSM is another
double-layer tool called the Change Propagation
Frequency Matrix (CPFM) (Giffin et al. 2009). The
CPFM is a square matrix in which element (m, n) gives
the frequency (0 to 1) with which a parent change in
component n led to a child change in component m. The
CPFM might give some indication of the strength of
dependencies among product components. Mechanical
systems, for example, frequently propagate changes
because of the strong interdependence of their physical
parts. Indeed, Eckert et al. (2004) reports that in a
helicopter design, a change to the engine almost always
causes a change to the bare fuselage, the transmission, the
avionics, and the engine auxiliaries, among others. By
contrast, modular software systems may be less prone to
change propagation. For example, the software-
dominated system in Section 5Õs case study usually
exhibited a low propagation frequency of less than 10%
between all subsystems (Giffin et al. 2009).

Fig. 7 The Component-PDSM succinctly shows where propagation
occurred within a product design

 11

Fig. 8 Overlay of the Product DSM and Component-PDSM

4.4.4 Product DSM/Component-PDSM Overlay

Another useful perspective comes from overlaying the
Component-PDSM with the Product DSM (i.e., the DSM
of the product layer). Such a double-layer overlay reveals
where propagation was predicted versus where it actually
occurred. The reasoning here is that the Product DSM
captures all the technical interfaces among the components
of a product. Consequently, the Product DSM should
predict where parent-child propagation could occur,
assuming it can only occur between immediately adjacent
components. Meanwhile, the Component-PDSM shows
where parent-child propagation actually occurred. Thus,
the overlay of these matrices compares theory with
practice. Giffin et al. performed an equivalent overlay in
(2009), but did not formalize the tool in detail.

Fig. 8 shows the overlay of the hypothetical DSM and
Component-PDSM from Fig. 6 and Fig. 7, respectively.
The overlay exposes four types of behavior:
¥ Predicted and Propagated (PP) means that the Product

DSM predicted propagation by virtue of the
componentsÕ technical interface, and that propagation
did actually occur as predicted. This behavior, called
direct propagation, is relatively tolerable, because
propagation, while still non-ideal, occurred as expected.

¥ Predicted and Not Propagated (PN) means that the
Product DSM predicted propagation, but that
propagation did not occur. This behavior is
advantageous, because somehow direct propagation
was avoided despite component adjacencies. Possible
explanations include (a) clever design choices avoided
propagation (b) the changes were of too low magnitude
to propagate, and (c) good communication between
engineers prevented propagation.

¥ Not Predicted and Propagated (NP) means that the
product DSM did not predict propagation, yet
propagation still occurred. This behavior, called
indirect propagation, contradicts the conventional
belief that parent-child propagation can only occur
between adjacent components. One explanation for this
behavior is that the Product DSM is incomplete (i.e.,
missing technical interfaces), such that the indirect
propagation is actually just direct propagation in

disguise. The occurrence of indirect propagation will
be investigated further in Section 5Õs case study.

¥ Not Predicted and Not Propagated (NN) means that
the product DSM did not predict propagation and
propagation did not occur. This behavior is expected
and the least interesting.

Given any of these behavior types (PP, PN, NP, and NN),
an organization can benefit from investigating their causes
in more depth. When propagation did occur, whether
predicted or not (i.e., PP or NP), the organization might
find ways to improve its operation to avoid propagation in
the future. When propagation did not occur (i.e., PN or
NN), the organization should evaluate the reasons for the
non-propagation of changes, and formally adopt or
encourage any good practices.

4.4.5 Alignment Matrix

The Alignment Matrix is a double-layer tool developed by
Sosa et al. (2007) that looks for patterns between the
product layer and social layer. The Alignment Matrix
performs an overlay of the Product DSM and the Social
DSM. The premise is that if components a and b are
connected in the Product DSM, then communication
should exist between engineers a and b in the Social
DSM. The Alignment Matrix discovers discrepancies
between the two DSMs for further analysis. One
weakness of the Alignment Matrix is that it is only
applicable when there is a one-to-one mapping between
the product and the organization. If a one-to-one mapping
does not exist, as may be the case for large and complex
development projects (Sosa et al. 2000), use of the
Alignment Matrix is not as straightforward. However,
Eppinger (2001) and Morelli et al. (1995) have found
successful workarounds in similar situations.

In general, the Alignment Matrix exposes two types of
mismatches: unidentified interfaces and unattended
interfaces, between the Product and Social DSMs (Sosa et
al. 2007). An unidentified interface is a communication
link lacking a corresponding product interface, while an
unattended interface is a product interface lacking a
corresponding communication link. Unidentified
interfaces are generally positive phenomena, while
unattended interfaces can be detrimental when critical
product interfaces go unnoticed. A lack of necessary
communication can lead to poor initial designs that need
changing later.

4.4.6 Component-CPI

The first of the double-layer metrics is the Component
Change Propagation Index (Component-CPI, formerly

 12

just ÒCPIÓ), which quantifies a product componentÕs
propagation behavior. As defined by Suh and de Weck
(2007) and refined by Giffin et al. (2009), the index is
calculated by Eq. 3.

 Eq. 3

Through Eq. 3, the ComponentÐCPI compares the
numbers of changes propagating in (Cin(k)) and out
(Cout(k)) of a component. One can determine these
quantities from the multilayer network model. For
example, if change n1 spawns change n2 (as would be
indicated by an intra-layer edge between nodes n1 and n2
in the change layer) and changes k1 and k2 affect
components m1 and m2, respectively (as would be
indicated by inter-layer edges connecting n1 to k1 and n2 to
k2), then Cin(k1) and Cout(k2) would each have to be
incremented by 1.

The Component-CPIÕs quantitative spectrum (-1 to 1)
corresponds with the qualitative behavior spectrum (Sec
2.1) proposed by Eckert et al. (2004). For example, a
multiplier component gives rise to more changes than it
absorbs, which means Cout(k) > Cin(k), or CPI > 0.
Meanwhile, a component could also be a carrier (CPI " 0),
absorber (CPI < 0), or constant (CPI undefined). Giffin et
al. (2009) considered the distribution of CPI values in a
real-world system of 46 subsystems (see Section 5Õs case
study). They reported the existence of 7 strong multipliers
(CPI > 0.3), 3 weak multipliers (0.1< CPI <0.3), 6 carriers
(-0.1 < CPI <0.1), 13 weak absorbers (-0.3 < CPI < -0.1),
13 strong absorbers (CPI < -0.3), and 4 constants (CPI
undefined).

Suh and de Weck (2007) use the Component-CPI as a
basis for embedding flexibility in a design. For instance,
they recommend that multipliers (and sometimes carriers)
are prime targets for flexibility in anticipation of
potentially costly propagation behavior by these
components.

4.4.7 Change Acceptance/Reflectance Rate

Giffin et al. (2009) also defined another double-layer
metric called the Change Acceptance Index (CAI). CAI is
the fraction of proposed changes ultimately accepted by a
product component. The CAI of component k is
calculated by Eq. 4.

 Eq. 4

The related Change Reflection Index (CRI) of component
k is calculated similarly in Eq. 5.

 Eq. 5

One can calculate a componentÕs CAI and CRI from the
multilayer network model. For example, if x changes
have been proposed for component k, then inter-layer
edges would connect x changes in the change layer to
component k in the change layer. The CAI and CRI
would then reflect how many of those x changes were
accepted and rejected, respectively.

The CAI and CRI measures a componentÕs openness
and stubbornness to accommodate change, respectively.
Giffin et al.Õs (2009) study of a real-world system revealed
that the large majority of subsystems were relatively
accepting of change (CAI > CRI).

4.4.8 Proposal Acceptance Rate

Another double-layer metric, called the Proposal
Acceptance Rate (PAR), measures an engineerÕs
performance as a proposer of change. Such a metric was
suggested by Giffin (2007), but not developed in detail.
When an engineer proposes a change request, the request
is ultimately accepted or rejected. The PAR is essentially
an engineerÕs rate of acceptance as a proposer of changes.
The PAR of engineer j can be intuitively calculated with
Eq. 6.

 Eq. 6

One can calculate an engineerÕs PAR from the multilayer
network model. For example, if engineer m proposed x
changes, then inter-layer edges would connect engineer m
in the product layer to x changes in the change layer. The
PAR would then reflect how many of those x changes
were accepted.

An engineerÕs PAR can reflect his or her skill, attitude,
and expertise. A high PAR might mean the engineer is
innovative and knowledgeable, while a low PAR might
imply he or she tends to have ideas that are difficult to
implement. However, other rationalizations for the PAR
of a particular engineer could exist. For instance, a truly
innovative engineer could still have a low PAR if the
organization or product is sluggish or stubborn to make
changes. Conversely, a less creative engineer could still
have a high PAR if the organization or product is
especially receptive of change. Section 5Õs case study will
explore these competing explanations using PAR values
calculated for a real-world scenario.

 13

4.5 Triple-Layer Tools and Metrics

Triple-layer tools and metrics consider all three layers of
the multilayer network model at once. Only one triple-
layer tool (the ESM) and one triple-layer metric (graph
properties) were found in the literature.

4.5.1 Engineering Systems Matrix

As introduced in Section 2, BartolomeiÕs (2007) ESM is
essentially a DSM augmented to include nodes from
multiple domains and edges within and across those
domains. As such, the ESM can be a triple-layer tool.
The ESM highlights that the multilayer network
essentially forms a single grand network with multiple
types of nodes and edges (similar to a multipartite graph,
Diestel 2006).

4.5.2 Graph Properties

Just as graph properties were applicable to any single
layer, they can also help describe the grand network
formed by all three layers. In the context of the grand
network, all nodes and edges are treated equally.
Consequently, the graph properties of individual nodes
take on new meaning in the grand network relative to their
properties in their respective single-layer domains.
Overall, graph properties of the grand network, such as
centrality, can provide useful insights into the relative
influence of items in the grand scheme of engineering
change management. For instance, an organization could
look for components of high centrality in the grand
network to find critical spots in the product. A highly
central component is likely the subject of extensive
change. The organization may consider redesigning or
buffering that component so that it does not consume so
much time, money, and resources in the future. Similarly,
an engineer of high centrality in the grand network is
likely a systems engineer, high performer, or go-to person
in the organization. By contrast, an engineer of low
centrality might be a specialist, an underperformer, or
someone who is underutilized or only partially assigned to
the project.

Table 4 Newly-introduced multilayer network tools and metrics

 Name Layers

Tools Engineer Propagation DSM Change
& Social

Engineer Change Propagation Index Change
& Social Metrics

Propagation Directness Product
& Social

Fig. 9 Engineer Propagation DSM for hypothetical application

4.6 New Tools and Metrics

Thus far, previous research has provided a good number
of tools and metrics applicable to the multilayer network
model. However, the repository still seems to have a few
weak areas, particularly if one wishes to analyze the social
layer. Indeed, the literature on change propagation has
lacked substantial quantitative treatment of the people
involved in the change process. This paper establishes a
couple of new tools and metrics for this very purpose: the
Engineer-Propagation DSM and the Engineer-Change
Propagation Index. Another new item introduced here is
a metric called Propagation Directness, which counts how
many technical interfaces are spanned by an instance of
parent-child propagation. These new additions to the
repository are summarized in Table 4.

4.6.1 Engineer Propagation DSM

One goal of this research was to determine a way to
analyze the propagation effects of the social layer. To this
end, this paper proposes a double-layer tool called the
Engineer Propagation DSM (Engineer-PDSM).

The Engineer-PDSM tracks instances of change
propagation from one engineer to another over some time
period in the design process. The matrix is square with a
row (m) and column (n) for each engineer in an
organization. Element (m, n) of the Engineer Propagation
DSM counts the number of times a parent change
implemented by the instigating engineer n spawned a
child change implemented by the affected engineer m.

Fig. 9 shows the Engineer-PDSM corresponding to the
three engineers (John, Susan, and David) from the
hypothetical application in Section 3.2. The matrix
indicates that parent-child propagation occurred twice.
One change propagated from David to Susan, i.e., when
David changed ! c, Susan had to change to C1. Another
change propagated from Susan to himself, i.e., when
Susan changed C1, she also had to change C2. It should be
noted that DavidÕs change initially triggered a change for
John to implement as well. However, because JohnÕs
change (to R1) was ultimately rejected, propagation
technically did not occur. Consequently, that rejected

 14

propagation does not appear in the Engineer-PDSM. This
convention is also followed by Giffin et al. (2009).

4.6.2 Engineer-CPI

The Engineer-PDSM can be used to calculate a
meaningful double-layer metric called the Engineer
Change Propagation Index (Engineer-CPI). The
Engineer-CPI quantifies an engineerÕs performance with
respect to the propagation effects of his (or her)
implementation of changes. The Engineer-CPI is a
number between -1 and +1, calculated by Eq. 7.

 Eq. 7

In Eq. 7, Eout(j) is the number of changes that propagated
from changes implemented by engineer j. Ein(j) is the
number of changes implemented by engineer j that
propagated from changes implemented by other engineers.
More simply, Ein(j) and Eout(j) are the in-degree and out-
degree, respectively, of the Engineer-PDSM. Returning to
the hypothetical application, one can calculate the
Engineer-CPIs of David, Susan, and John to be 1, 0, and
undefined, respectively.

It should be obvious that the Engineer-PDSM and
Engineer-CPI are basically extensions of Giffin et al.Õs
(2009) Component-PDSM and Component-CPI,
respectively. Just as the Component-PDSM captures the
occurrence of change propagation between product
components, the Engineer-PDSM captures the occurrence
of change propagation between the engineers
implementing those changes. As such, the Engineer-CPI
spectrum can be interpreted similarly to the Component-
CPI spectrum; namely, positive, negative, zero, and
undefined Engineer-CPIs correspond with multipliers,
absorbers, carriers, and constants, respectively.

This paper proposes further that the Engineer-CPI
spectrum should also map onto the spectrum of
organizational roles. That is, an engineerÕs CPI should
theoretically correspond with his or her job description.
Managers and systems engineers will typically be
multipliers (Eout > Ein) because they initiate high-level
changes that potentially require many lower-level changes
to be completed. For example, a manager might
coordinate with customers and consequently change the
requirements for a product to satisfy. Similarly, a systems
engineer might recognize a high-level problem (e.g., given
unsatisfactory test results) and consequently initiate
corrective action that propagates through the product. By
contrast, specialists tend to behave like absorbers (Ein >
Eout), because they perform changes in detailed areas of the
product where there is little chance of further propagation.

Specialists essentially implement changes at the end of
propagation chains. Meanwhile, team leaders might
correspond with carriers (Ein = Eout), since they pass on
some high-level changes and may initiate changes on their
own, but are also involved with low-level changes in the
product. Finally, constants (Ein = Eout = 0) do not seem to
have an obvious corresponding organizational role. If an
engineer is a constant, that means he (or she) only
implements isolated changes (i.e., they have no parent
change and no children changes) or they are not involved
in engineering change activity at all. An interpretation of
this behavior might be a good topic for future research.
Section 5Õs case study explores the Engineer-CPI in
greater detail.

4.6.3 Propagation Directness

Propagation Directness (PD) is another double-layer
metric proposed for the first time here. PD is defined as
the number of product interfaces spanned by an instance
of parent-child propagation. PD can be calculated using
the Component-PDSM and Product DSM. Specifically, if
the Propagation DSM indicates that a change propagated
from component n to component m, then the PD of that
propagation is equal to the geodesic (shortest) path from
component n to m in the Product DSM.

Propagation Directness reflects whether propagation is
direct or indirect. Direct propagation implies PD # 1,
because direct propagation occurs when a child change
arises in a component that is adjacent (PD = 1) or identical
(PD = 0) to the component affected by the parent change.
By contrast, indirect propagation has PD > 1, because a
child change arises in a component nonadjacent to the
component affected by the parent change. As mentioned
in Section 4.4.4, direct and indirect propagation
correspond with the PP and NP behavior types,
respectively, that may be exposed when overlaying the
Product DSM with the Propagation DSM.

Propagation Directness has obvious implications for
the successful prediction of change propagation.
Conventional wisdom says that Propagation Directness
should always be PD # 1; in other words, all propagation
should be direct propagation. Accordingly, the CPM suite
(Clarkson et al. 2004; Keller et al. 2005) notably only
allows for direct propagation, but emphasizes that
recursive direct propagation can form propagation chains
spanning several product interfaces. However, the
program in Chapter 5Õs case study experienced a
considerable amount of indirect propagation, in which
Propagation Directness was usually PD = 2, and
occasionally PD = 3.

 15

5 Case Study

The case under investigation here is that of a large
technical program whose purpose was to develop a large
scale sensor system. The system consisted of globally
distributed hardware and software segments. The entire
endeavor was very complex and involved multiple
stakeholders and distributed users and operators.

The software-dominated system can be decomposed
into 46 areas, or coherent segments of software, hardware,
and different levels of associated documentation. These
ÒareasÓ are roughly analogous to subsystems, the
identities of which are abstracted in this paper for
confidentiality reasons. Some additional facts about the
system were provided through interviews with one of the
programÕs lead systems engineers.

5.1 The Data

The data for this case study was extracted from the

programÔs configuration management records. Details
about the data extraction methodology can be found in
Giffin et al.Õs (2009) previous analysis of the same
program. The full extracted dataset contains detailed
information about 41,551 change requests (CRs)
generated by the program over an eight year period. Each
CR has a separate record, as shown in Table 5. The data
entries in Table 5 include:

¥ Identification Number Ð the CRÕs unique tracking

number assigned in chronological order
¥ Date Created - the month and year that the CR was first

entered in the change management system
¥ Data Last Updated Ð the month and year that the CRÕs

record was last updated
¥ Area - the system area (1 of 46) affected by the CR

Change Magnitude - the expected effort required to
evaluate and implement the CR on a scale of 0 to 5,
based on the number of source lines of code affected or
total hours required

¥ Parent ID Ð the ID of the CRÕs parent CR, if any
¥ Children ID(s) Ð the ID(s) of the CRÕs children CRs, if

any
¥ Sibling ID(s) Ð the ID(s) of the CRÕs sibling CRs,

including children of the same parent or CRs related in
some other significant way

¥ Submitter Ð the individual who first entered the CR into
the change management system

¥ Assignees Ð the individual(s) who formally possessed
responsibility for the CR at some point, either as an
evaluator or implementer

¥ Associated Individuals Ð other individuals involved
with the CR

Table 5 Sample change request record (Giffin 2007)

ID Number 12345

Data Created, Last Updated MAR-Y5, JAN-Y6

Area Affected 19

Change Magnitude 3

Parent ID 8648

Children ID(s) 15678, 16789

Sibling ID(s) 9728

Submitter Eng231

Assignee(s) Eng008 eng231 eng018

Associated Individual(s) admin001 eng271

Stage Originated, Defect Reason [blank], [blank]

Severity [blank]

Completed? 1

¥ Stage Originated, Defect Reason, & Severity Ð an

indication of whether the CR originated from a
documented customer request; often left blank

¥ Completed? Ð the approval status of the CR, i.e.,
accepted (1), rejected (-1), or still pending (0)

5.2 Model Construction

Hidden in the raw data is a very complex multilayer
network. In all, the dataset identifies 46 system areas,
41,551 change requests, and 501 engineers and
administrators that constitute the nodes of the product
layer, change layer, and social layer, respectively. The
dataset also provides information on some, but not all, of
the types of intra-layer and inter-layer edges. Table 6
indicates which edge data are available for this case study,
and the source of that data. Of the intra-layer edges, only
those in the product layer and change layer are available.
The product layerÕs intra-layer edges were provide by one
of the programÕs lead systems engineers, while the change
layerÕs intra-layer edges (i.e., propagation relationships)
are gleaned from the ÒParent ID,Ó ÒChildren ID(s),Ó and
ÒSibling ID(s)Ó entries for each CR record (Table 5). Of
the inter-layer edges, only the product-to-change and
social-to-change inter-layer edges are known, which are
gleaned from the ÒArea AffectedÓ and ÒAssignee(s)Ó (and
ÒSubmitterÓ) entries for each CR record, respectively.

Table 6 Data availability for case study

 Edge Data Available? Source

Product Layer Yes Interview

Change Layer Yes Table 5
Intra -
Layer

Social Layer No -

Product-to-Change Yes Table 5

Product-to-Social No -
Inter -
Layer

Change-to-Social Yes Table 5

 16

Using the available data, Fig. 10 and Fig. 11 draw the
multilayer networks associated with two stand-alone
change networks called 11-CR and 87-CR, respectively.
11-CR consists of 11 related change requests evaluated
and implemented by nine engineers and affecting only
three of the 46 system areas. The 87-CR network consists
of 87 related change requests evaluated and implemented

by 50 engineers and affecting 12 system areas. The layers
are drawn in a linear formation, and all the node labels
correspond exactly with those in the raw dataset. For
visual ease, the edge arrows (and node labels for 87-CR)
have been removed. No intra-layer edges are shown in the
social layer because the data were unavailable (Table 6).

Fig. 10 Multilayer network model for 11-CR

Fig. 11 Multilayer network model for 87-CR

 17

5.3 Analysis of Engineer Performance

The first thrust of this case study elucidates some
interesting aspects of the social layer and its influence on
change propagation and the change process.
Specifically, the programÕs engineers are analyzed as
implementers and proposers of change using the
Engineer-CPI and Proposal Acceptance Rate,
respectively.

5.3.1 Implementers of Change

One element of an engineerÕs work is the implementation
of changes. To assess an engineerÕs performance in this
regard, this case study uses the newly proposed
Engineer-CPI. Fig. 12(a) shows the distribution of
Engineer-CPIs
calculated for all 501 engineers identified in the data set.
The bars do not sum to 501, because nearly half of the
engineers (226) actually behaved like constants (i.e., CPI
undefined) who were only involved with isolated
changes, i.e., they did not contribute to any change
propagation.

The authors postulated earlier that the Engineer-CPI
should correspond to the organizational role of an
engineer, i.e., systems engineers are multipliers (CPI >
0), team leads are carriers (CPI = 0), and specialists are
absorbers (CPI < 0). The data confirms this intuition.
To determine the effects of an engineerÕs organizational
role on his Engineer-CPI, the engineers in this program
were divided into two classes: coders and
testers/integrators. Coders were the specialists who
actually made changes to lines of code within the
systemÕs software areas. By contrast, testers and
integrators were more like systems engineers who tested
and integrated the system areas together. In the absence
of a detailed project directory, it was still possible to
roughly classify each engineer according to a heuristic
recommended by the lead systems engineer interviewed

in this study. The heuristic classified an engineer as a
ÒcoderÓ if 60% or more of his work focused on core
technology in the system (as opposed to support structure,
testing tools, etc.). Otherwise, the engineer was classified
as a Òtester/integrator.Ó

Fig. 12(b) and (c) show the distribution of Engineer-
CPIs for the coders and testers/integrators, respectively.
The distributions offer some evidence that the Engineer-
CPI indeed corresponds with an engineerÕs organizational
role. As expected, the codersÕ distribution is heavy on the
absorber end of the spectrum. In fact, 74% of coders had
negative CPIs. By contrast, the testers/integratorsÕ
distribution is heavy on the multiplier end of the spectrum,
with 53% having positive CPIs. The average coderÕs CPI
was -0.16 (weak absorber), while the average
tester/integratorÕs CPI was 0.13 (weak multiplier). Thus,
this case study offers some verification of the
correspondence between the Engineer- CPI and
organizational roles. Namely, the coders (or specialists)
tended to be absorbers, while the testers and integrators
(or ÒsystemsÓ engineers) tended to be multipliers of
change.

The data also suggests\ that another influence on an
engineerÕs CPI is the context of his work, i.e., the
propagation behavior of the areas to which an engineer is
assigned to implement changes. The rationale here is that
some engineers may be assigned to parts of the product
that are inherently multipliers or inherently absorbers, as
measured by their Component-CPIs. As a result, these
engineers may have little independent control over the
propagation effects of their work.

To determine the effect of Component-CPIs on the
Engineer-CPI, the engineers in this program were divided
in two groups: those with absorber assignments and those
with multiplier assignments. An engineer was said to
have Òabsorber assignmentsÓ if the average Component-
CPI of his assigned areas was negative (i.e., an absorber).
Conversely, an engineer was said to have Òmultiplier
assignmentsÓ if the average Component-CPI of his
assigned areas was positive (i.e., a multiplier).

 (a) (b) (c) (d) (e)

Fig. 12 Distributions of Engineer-CPIs for various groups of engineers

 18

Fig. 12(d) and (e) show the distribution of Engineer-CPIs
for the engineers with absorber and multiplier
assignments, respectively. The distributions offer some
evidence that the Engineer-CPI indeed depends on the
Component-CPI of an engineerÕs assigned areas. In fact,
67% of engineers with absorber assignments had
negative CPIs (i.e., were absorbers), and 75% of
engineers with multiplier assignments had positive CPIs
(i.e., were multipliers). The average CPI for each group
was -0.12 (weak absorber) and 0.44 (moderate
multiplier), respectively. Thus, an engineerÕs CPI
appears to be somewhat dictated by the Component-
CPIs, of his assigned areas. That is, those engineers who
work on multipliers and absorbers tend to be multipliers
and absorbers themselves, respectively.

5.3.2 Proposers of Change

The other element of an engineerÕs work is the proposal
of changes. An engineer CR will ultimately be accepted
or rejected, depending on its costs, benefits, and risks
from a systems perspective. The authors propose a two-
dimensional scale for judging the performance of
engineers as proposers of change. The scaleÕs two
dimensions are an engineerÕs Proposal Acceptance Rate
(PAR) and the number of changes he/she proposed.

Fig. 13(a) plots the position of the 382 engineers who
proposed any changes on this scale. Following the
advice of one of the programÕs lead systems engineer,
Fig. 13(a) is additionally broken into four quadrants, A,
B, C, and D, which contain 85 (22%), 151 (40%), 123
(32%), and 23 (6%) of the 382 engineers, respectively
The quadrant boundaries are located at the average PAR
and average proposal count of all 382 data points. Each
quadrant has different implications for an engineerÕs
performance, depending on his/her PAR and proposal
count relative to the average engineer:

¥ Quadrant A contains engineers with high PARs and

high numbers of proposals. These engineers might be
termed Òhigh performers.Ó

¥ Quadrant B contains engineers with high PARs but
low numbers of proposals. These engineers likely
have great ideas and good systems awareness, since
their change requests are usually accepted. However,
for some reason, they propose a relatively low number
of change requests. The reason for the low proposal
count may lie in the engineerÕs organizational role,
personality, or some other factor.

¥ Quadrant C contains engineers with low PARs and
low numbers of proposals. These engineers are
relatively passive with only moderate activity level
and little success as proposers of change.

¥ Quadrant D contains engineers with low PARs but
high numbers of proposals. There are two possible

explanations for this troubling behavior. One is that
these engineers tend to have lots of ideas that are
ultimately rejected because the proposals are not well
conceived. The alternative explanation is that the
engineer is actually quite innovative, but the
organization or product itself is stubborn or sluggish to
change. Whatever the explanation, these engineers
should be managed in a more focused way since they
generate many change requests Ð each of them causing
some effort for proper review and disposition Ð but a
substantial fraction of them are not implemented.

Lastly, the authors propose another useful metric, RPAR,
which is the ratio of an engineerÕs PAR to the average
CAI of the areas targeted by his change proposals. The
ratio is calculated by Eq. 8, where N is the number of
proposed change requests, and CAIn is the CAI of the area
targeted by the nth proposal.

 Eq. 8

Fig. 13(b) displays a histogram of RPAR values for all the
engineers in the program. The majority (78%) of
engineers have an RPAR " 1, which would indicate that
most engineersÕ PARs match closely with the CAIs of
their underlying assigned technical areas. A closer look at
the data reveals that this result is an artifact of most
engineers always proposing change requests in the same
area. Consequently, the PARs and associated CAIs are
essentially equal (RPAR = 1). Still, 15% of engineers had
RPAR > 1. These engineers were able to achieve PARs
higher than the average CAI of their targeted areas. These
engineers may be particularly innovative since their ideas
were accepted by relatively change-resistant areas in the
system. By contrast, the 10% of engineers with RPAR < 1
struggled to get changes accepted by relatively receptive
areas. These engineers may not be quite as innovative or
systems savvy and might benefit from additional training.

(a) (b)

Fig. 13 Proposal Acceptance Rate (PAR) results. Each dot in (a)
represents the position of one engineer in the program

 19

Fig. 14 Overlay of Product and Component-PDSM for case study

5.4 Characterization of Change Propagation

The second thrust of this case study involves the general
characterization of change propagation. The primary
issue addressed here is the counterintuitive phenomenon
of indirect propagation, a common occurrence for this
program. Secondly, the study considers the issue of
propagation extent, the number of generations of
descendants propagated by an initiating change. In this
program, propagation always stopped after five, and
rarely more than four, generations of descendants.

5.4.1 Indirect Propagation

Conventional wisdom about change propagation assumes
that only direct propagation is possible; that is, a parent
change in one component can only yield child changes in
itself or immediately adjacent components (Clarkson et
al. 2004). However, the program discussed here
experienced considerable indirect propagation, whereby
child changes occurred in nonadjacent areas.

Fig. 14 overlays the programÕs Product DSM with its
Component-PDSM (from Section 4.4.4). Giffin et al.
(2009) performed an equivalent overlay for this program.
The overlay exposes all four types of parent-child
propagation behavior. Overall, 15%, 9%, 9%, and 66%
of all pairs of components exhibited PP, PN, NP, and NN
behavior, respectively.

Fig. 15 Distribution of Propagation Directness

Fig. 16 Examples of change propagation (both direct and indirect)
from case study

Where propagation did occur (PP and NP), it is
meaningful to calculate the effective Propagation
Directness (from Section 4.6.3). Fig. 15 displays the
distribution of Propagation Directness values, considering
every instance of parent-child propagation in the program
in which the child change was accepted (regardless of the
parent changeÕs approval status). The distribution reveals
that 78% of all parent-child propagation in the program
was direct (PD # 1), while a surprising 22% was indirect
(PD > 1). The vast majority of indirect propagation
occurred across two interfaces (PD = 2) and a handful (3)
occurred across three interfaces (PD = 3). It should be
noted that the maximum possible Propagation Directness
was three because the system networkÕs diameter is three.

Delving further, Fig. 16 illustrates a few examples of
parent-child propagation from the dataset. In each
illustration, the change layer contains the parent change
and child change connected by a directed intra-layer edge.
Meanwhile, inter-layer edges connect these changes to the
affected areas in the product layer. For PD > 1, the
product layer also contains the unaffected areas on the
shortest path between the two affected areas. All nodes
are labeled as they appear in the raw data. For simplicity,
the social layer is omitted.

Each example in Fig. 16 has a different Propagation
Directness value, which should be clear from the number
of product interfaces spanned by the propagation. In
Example A, self-propagation (PD = 0) occurred in Area
#8; interestingly, the parent change in this example was
ultimately rejected. Next, Example B shows direct
propagation between adjacent areas (PD = 1); a change to
Area #1, which contains requirements documentation,
caused a change in Area #10, a core technology area.
Example C exhibits indirect propagation; Areas #3 and
#19 are separated by two interfaces (PD = 2) with Area #1
in between them. It should be noted that several geodesic
(length-2) paths exist between Areas #3 and #19, besides
the one through Area #1. Finally, Example D shows one
of only three scenarios in the entire dataset with PD = 3.
It is important to remember that in Examples C and D, the
intermediate areas (connecting the two affected areas)
were unaffected by any related change, which constitutes
indirect propagation.

The phenomenon of indirect propagation contradicts
conventional wisdom on change propagation. As such,

 20

one might conclude that if indirect propagation appears
to have occurred, then the Product DSM must be missing
some interfaces that actually exist; in other words, any
observed indirect propagation is really direct propagation
in disguise. If this explanation is true, then the Product
DSM in this case study would shockingly be missing 192
interfaces. This seems unlikely. In fact, a lead systems
engineer from the program explained that indirect
propagation is a legitimate artifact of software system
development. Apparently, engineers in this program
would frequently violate the intended structure of the
system in order to achieve a quick solution for a
redesign. These ill-advised maneuvers were sometimes
necessary during time crunches to meet development
milestones (e.g., PDR, CDR, etc.). For example, one
area of the system contained System Adjustable
Parameters (SAPs). A SAP is a system variable kept in a
loadable file, rather than in the software code itself.
Many areas of the system were nominally disconnected
from the SAP file. Still, on occasion, a hasty redesign
effort would change the SAP file (e.g., adding an SAP),
despite the lack of an interface between the SAP file and
the parent area. In effect, a new interface was created,
allowing a change to propagate; however, this interface
was not part of the original Product DSM. Thus, indirect
propagation, though unintended, can and does occur
during product development. Additional case studies are
necessary to determine if indirect propagation is a
common artifact among software systems only, or
hardware systems as well.

5.4.2 Propagation Extent

Propagation extent refers to the number of generations of
descendants triggered by an initiating change. Eckert et
al.Õs (2004) study of Westland Helicopters found that a
change rarely occurs by itself and usually propagates no
more than four generations. The data for the program
here reaffirms the latter finding, but differs from the
former.

Fig. 17 Distribution (on a log-scale) of the number of generations
per un-parented change

Fig. 18 Examples of 4- and 5-generation propagation chains

Fig. 17 shows the programÕs distribution of the number of
generations flowing from each un-parented change over
this programÕs eight year period. An un-parented change
is an individual change that is not the child of another
change, and may or may not have any child changes of its
own. In other words, each count in Fig. 17 corresponds
with a distinct propagation chain, whether it contains one
isolated change or a line of descendants. In all, the
program generated 36,184 un-parented changes.

The results show that change propagation in the system
almost always (99.99%) halted after four generations, just
as Eckert et al. (2004) reported in their study. There was
only a handful (5) of changes that yielded five generations
of changes, which was the maximum number of
generations experienced; in other words, change
propagation always vanished after five generations.
Examples of propagation chains from the dataset with four
and five generations of descendants are illustrated in Fig.
18. All the node labels correspond exactly with those in
the raw dataset.

Interestingly, the results in Fig. 17Õs differ from Eckert
et al.Õs (2004) finding that a change rarely occurs alone.
In fact, isolated changes were actually the norm for this
system; 91% of un-parented changes (33,152 out of
36,184) did not have any children (i.e., zero generations
propagated). A deeper look into the context of each
change may explain these statistics more. For instance,
the large majority (80%) of changes in this program were
low magnitude (0 or 1 on a scale of 0 to 5), which may
explain the generally low probability of propagation.

Overall, propagation extent likely stands as an
extremely context-dependent feature of change
propagation. This case study, at least, confirms that
propagation vanishes after five generations of
descendants, and rarely exceeds four generations.

 21

5.5 Reflection on Case Study

This case study demonstrated the practical utility of the
multilayer network model, in addition to gaining further
insight into industryÕs experience with change
propagation.

The most valuable and novel part of the study was the
investigation of the largely unexplored social layer.
Here, the Engineer-CPI and PAR showed promise as
measures of personnel management and performance
assessment. The Engineer-CPI was used to quantify the
propagation effects of an engineerÕs implementation of
changes. The data indicated that the Engineer-CPI is
partially dependent on an engineerÕs organizational role
and the context of his assignments. Coders and
engineers who worked on absorbers in the system tended
to behave like absorbers themselves. Meanwhile,
testers/integrators and engineers who worked on
multipliers in the system tended to behave like
multipliers themselves. The programÕs engineers were
also analyzed as proposers of change with respect to their
PAR and the total number of changes they proposed. A
more conscious assignment of roles and identification of
engineers who fall into Quadrant D (Fig. 13a) may help
identify those who might benefit from additional
training.

The case study also contributed to the general
characterization of change propagation. It was found
that software-intensive systems may be particularly
susceptible to indirect propagation, by which changes
propagate between nonadjacent product components..
Finally, the study found that most changes did not lead to
any propagation. Propagation that did occur always
stopped after five, and rarely more than four, generations
of descendants. The trends revealed here contribute to
the future ability to rank or tag change requests
according to their likelihood of initiating long
propagation chains.

Ideally, the above analyses would have been
performed during the development effort, rather than in
post. That way, the program could have acted on the
results of the analyses. This case study had the luxury of
a rich dataset spanning the full development effort.
However, it is unclear (and not within the scope of this
paper) whether sufficient data would have been available
to reveal any actionable trends in real time.
Nevertheless, the use of retrospective statistical analysis,
as in this case study, still has potential value for future
development efforts. After all, most products (and
systems) are adaptations of predecessors and many are at
least analogous to previous products (Giffin et al. 2009).
Consequently, it may be possible to develop heuristic
relationships to predict the expected change activity for a
new product, by analyzing change statistics from
analogous development efforts.

6 Conclusion

This paper presented a multilayer network model in hope
of introducing a promising approach to the field.
Returning to the research questions of Section 1.2, the
authors propose the following answers based on their
research findings:
¥ What insights can be gained from a multilayer network

model of change propagation? A multilayer network
model (Fig. 3) provides a holistic framework for
analyzing and managing change propagation. As
demonstrated by the case study, new insights are
particularly gained by inclusion of the social layer. The
model represents a data-driven approach to change
management with the potential to guide design strategy,
change impact analysis, and human resource
management. Only a holistic framework like the
multilayer network model could comprehensively
address all these areas.

¥ What are potential tools and metrics for analyzing the
model? The multilayer network model provides a
platform for an array of viable tools and metrics. In
Table 2, this paper proposed a baseline repository of
tools and metrics, both old and new. Many tools and
metrics previously proposed in the literature are readily
incorporated by the model. Consequently, the model
offers a comprehensive paradigm that unifies previous
research in a common framework (Table 1). Moreover,
this paper introduced some promising new tools and
metrics, including the Engineer-PDSM, Engineer-CPI,
and Propagation Directness.

¥ How can the model contribute to the prediction,
prevention, and control of change propagation?
Taking a multilayer view in an engineering program
holds the promise of turning change management from
a rather passive administrative process to a more
predictive and proactive systems engineering process.

6.1 Future Work

The multilayer network model creates several avenues for
future work, including the following:

¥ This paper has only scratched the surface of the social

layer. Many questions remain about the social layerÕs
contribution to propagation phenomena. For instance,
it may be insightful to consider an engineerÕs CPI with
respect to an engineerÕs workload and experience, as
well as human resource management and milestones
during product development.

¥ Due to a lack of data, this paper was unable to consider
the communication patterns among engineers in the
social layer. The major question here is whether
communication between engineers who are in charge of

 22

interdependent components is a viable way to prevent
or reduce change or change propagation. Future case
studies may want to procure the data necessary to
analyze this relationship.

¥ Better visualization techniques for the multilayer
network model are needed. Clearer drawings may
reveal patterns and other insights more readily
recognized and appreciated by the human brain. The
dataset from this case study provides an array of small
and large change networks to test various multilayer
network visualization techniques in the future.

¥ One of the chief questions underlying all change
propagation research regards the predictability of
change and change propagation. A prediction
capability has both tactical and strategic implications.
Tactical prediction is useful in the short term, such as
when an organization assesses the impact of
individual change requests during product
development. Meanwhile, strategic prediction has
long-term utility, such as the estimation of life-cycle
costs during the earliest stages of product
development or while negotiating product
requirements with prospective clients. A multilayer
network perspective can aid these future efforts
through holistic, data-driven analysis.

References

Bartolomei, J. (2007). Qualitative Knowledge Construction for

Engineering Systems: Extending the Design Structure Matrix
Methodology in Scope and Procedure. PhD Thesis,
Engineering Systems Division.

Browning, T. R. (2001). ÒApplying the Design Structure Matrix to
System Decomposition and Integration Problems: a Review and
New Directions.Ó IEEE Transactions on Engineering
Management 48(3): 292-306.

Clarkson P.J., Simons, C., and Eckert, C. (2004). ÒPredicting
Change Propagation in Complex Design.Ó Transactions of
ASME 126: 788-797.

Danilovic, M. and Browning, T.R. (2007). ÒManaging Complex
Product Development Projects with Design Structure Matrices
and Domain Mapping Matrices.Ó International Journal of
Management 25: 300-314.

Diestel, R. (2005). Graph Theory. 3rd Edition. Springer.
Earl, C., Eckert, C., and Clarkson, J. (2005). ÒDesign Change and

Complexity.Ó 2nd Workshop on Complexity in Design and
Engineering.

Eckert, C., Clarkson, P. and Zanker W. (2004). ÒChange and
Customization in Complex Engineering Domains,Ó Research in
Engineering Design 15: 1-21.

Eppinger, S. Whitney, D., Smith, R., and Gebala, D. (1994). ÒA
Model-based Method for Organizing Tasks in Product
Development.Ó Research in Engineering Design 6(1): 1-21.

Eppinger, S. D. (2001). ÒPatterns of Product Development
Interactions.Ó International Conference on Engineering Design.

Giffin, M. (2007). Change Propagation in Large Technical
Systems. S.M. Thesis. System Design and Management
Program, MIT.

Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., and
Clarkson, J. (2009). ÒChange Propagation Analysis in Complex

Technical Systems.Ó Journal of Mechanical Design: 131 (8),
081010.

Huang, G.Q., Mak, K.L. (1999). ÒCurrent Practices of Engineering
Change Management in UK Manufacturing Industries.Ó
International Journal of Operations and Production
Management 19(1): 21.

Jarratt, T., Eckert, C., and Clarkson, J. (2005). ÒPitfalls of
Engineering Change: Change Practice during Complex Product
Design.Ó Advances in Design: 413-424.

Keller, R., Eger, T., Eckert, C.M., and Clarkson, P.J. (2005).
ÒVisualizing Change Propagation.Ó 15th International Conference
on Engineering Design: 62-63.

Morelli, M.D., Eppinger, S.D., and Gulati, R.K. (1995). ÒPredicting
Technical Communication in Product Development
Organizations.Ó IEEE Transactions on Engineering Management
42(2): 215-222.

NASA/SP-2007-6105 R1. (2007). NASA Systems Engineering
Handbook.

Newman, J. (2003). ÒThe Structure and Function of Complex
Networks.Ó Society of Industrial and Applied Mathematics 42(2):
167-256.

Nichols, K. (1990). ÒGetting engineering changes under control.Ó
Journal of Engineering Design 1(1): 1-6.

Pikosz, P., Malmqvist, J. (1998). ÒA Comparative Study of
Engineering Change Management in Three Swedish
Companies.Ó Proceedings of the DETC98 ASME Design
Engineering Technical Conference: 78-85.

Sosa, M.E., Eppinger, S.D., and Rowles C.M. (2000).
ÒUnderstanding the Effects of Product Architecture on Technical
Communication in Product Development Organizations.Ó MIT
Sloan School of Management Working Paper. No 4130.

Sosa, M.E., Eppinger, S.D., and Rowles, C.M. (2007). ÒAre Your
Engineers Talking to One Another When They Should?Ó Harvard
Business Review: 133-142

Steward, D.V. (1981). ÒThe Design Structure System: a Method for
Managing the Design of Complex Systems.Ó IEEE Transaction
on Engineering Management 28(3): 71-74.

Suh, E.S., and de Weck, O.L. (2007). ÒFlexible Product Platforms:
Framework and Case Study.Ó Research in Engineering Design 18
(2): 67-89.

Terwiesch, C and Loch, C. (1999). ÒManaging the Process of
Engineering Change Orders: the Case of the Climate Control
System in Automobile Development.Ó Journal of Production
Innovation and Management 16: 160-172.

Wright, I.C. (1997). ÒA Review of Research into Engineering
Change Management: implications for product design.Ó Design
Studies 18: 33-42.

