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Abstract A pervasive problem for engineering change 
management is the phenomenon of change propagation by 
which a change to one part or element of a design requires 
additional changes throughout the product.  This paper 
introduces a multilayer network model integrating three 
coupled layers, or domains, of product development that 
contribute to change propagation: namely, the product 
layer, change layer, and social layer.  A baseline 
repository of tools and metrics is developed for the 
analysis and management of change propagation using the 
model.  The repository includes a few novel tools and 
metrics, most notably the Engineer Change Propagation 
Index (Engineer-CPI) and Propagation Directness (PD), 
as well as others already existing in the literature.  As 
such, the multilayer network model unifies previous 
research on change propagation in a comprehensive 
paradigm.  A case study of a large technical program, 
which managed over 41,000 change requests in eight 
years, is employed to demonstrate the modelÕs practical 
utility.  Most significantly, the case study explores the 
programÕs social layer and discovers a correspondence 
between the propagation effects of an engineerÕs work 
and factors such as his/her organizational role and the 
context of his/her assignments.  The study also reveals 
that parent-child propagation often spanned two or more 
product interfaces, thus confirming the counterintuitive 
possibility of indirect propagation between nonadjacent 
product components or subsystems.  Finally, the study 
finds that most changes did not lead to any propagation.  
Propagation that did occur always stopped after five, and 
rarely more than four, generations of descendants. 
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CAI  Change Acceptance Index 
CPI  Change Propagation Index 
CPM  Change Prediction Method 
CR   Change Request 
CRI  Change Reflection Index 
DMM   Domain Mapping Matrix 
DSM  Design Structure Matrix 
ECM  Engineering Change Management 
ESM  Engineering Systems Matrix 
IPT  Integrated Program Team 
PAR  Proposal Acceptance Rate 
PD  Propagation Directness 
PDSM  Propagation Design Structure Matrix 
SAP   System Adjustable Parameter 
 

1 Introduction  

 
The design of a complex product is rarely, if ever, 
straightforward or permanent.  In fact, an organization is 
practically bound to make design changes throughout the 
conception, development, implementation, and operation 
of almost any product (Nichols 1990; Pikosz and 
Malmqvist 1998).  The process of engineering change 
management must balance the costs, benefits, and risks of 
implementing design changes, in light of their implications 
for schedule, budget, and product quality. 

A pervasive problem for engineering change 
management is the phenomenon of change propagation, 
by which a change to one part or element of a design 
requires additional changes throughout the product.  
Change propagation significantly contributes to the time, 
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money, and resources required for evaluating and 
implementing changes (Clarkson et al. 2004; Terwiesch 
and Loch 1999). 

The topic of change propagation has received 
considerable research attention over the last decade.  The 
highlights of the literature include qualitative and 
quantitative efforts to characterize, predict, control, and 
prevent change propagation.  These efforts have primarily 
drawn on network-based analyses by modeling products 
and change processes as networks of nodes and edges. 
 

1.1 Research Contribution 

 
Building on these contributions, this paper introduces a 
multilayer network model integrating three coupled 
layers, or domains of product development that contribute 
to change propagation: namely, the product layer, change 
layer, and social layer.  To the authorsÕ knowledge, no 
previous research on change propagation has, at least 
explicitly, taken a multilayer network approach.  The 
model proposed here draws on multilayer (or multi-
domain) network approaches already taken in broader 
research on product development and project 
management. 

Using a Venn diagram, Fig. 1 summarizes the research 
landscape associated with this research.  This paper, 
labeled ÒPasqual & de Weck (2011),Ó addresses the gap 
at the intersection of research on change propagation and 
multilayer network analysis. 
 

1.2 Research Framework 

 
Motivated by this gap, this paper investigates the 
following research questions: 
 
¥ What insights can be gained from a multilayer network 

model of change propagation? 
¥ What are potential tools and metrics for analyzing the 

model? 
¥ How can the model contribute to the prediction, 

prevention, and control of change propagation? 
 
The overarching hypothesis is that a multilayer network 
model provides a viable framework for the analysis and 
management of change propagation.  A baseline 
repository of tools and metrics is developed for use with 
the model.  The repository includes a few novel tools and 
metrics, in addition to others already existing in the 
literature.  As such, the model unifies previous research 
on change propagation in a comprehensive paradigm. 
 

 
 

Fig. 1 Relevant research landscape 
 
To demonstrate the modelÕs practical utility, this paper 
discusses a case study of a large technical program which 
managed over 41,000 change requests in eight years.  
Giffin (2007) and Giffin et al. (2009) performed earlier 
studies of the same program.  The case study in this paper 
uses an array of multilayer network tools and metrics to 
address two important topics.  The first topic revolves 
around the social layerÕs effects on change propagation; 
the investigation reveals interesting aspects of an 
engineerÕs performance in the implementation and 
proposal of changes.  The second topic focuses on the 
general characterization of change propagation.  The 
primary issue discussed here is the counterintuitive 
phenomenon of indirect propagation, by which 
propagation occurs between nonadjacent product 
components.  Additionally, the study finds that most 
changes did not lead to any propagation in the programÕs 
system design.  Propagation that did occur always stopped 
after five, and rarely more than four, generations of 
descendants. 

The remainder of this paper is structured as follows.  
Section 2 presents relevant background material in the 
form of a brief literature review.  Section 3 introduces the 
multilayer network model of change propagation.  A 
simple hypothetical example is used to illustrate the 
model.  Section 4 develops a baseline repository of tools 
and metrics for use with the model.  Section 5 conducts a 
case study to demonstrate the modelÕs practical utility.  
Section 6 provides a summary of the research findings and 
recommendations for future work. 
 

2 Background 

 
Engineering change management (ECM) is the branch of 
configuration management (NASA/SP-2007-6105 R1) 
concerned with the identification, evaluation, 
implementation, and auditing of changes to the design of a 
product or system (Huang and Mak 1999).  ECM is a 
critical process as changes are inevitable throughout 
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product development (Nichols 1990; Pikosz and 
Malmqvist 1998).  While changes theoretically present 
opportunities for an organization to improve its products, 
satisfy its customers, and stay competitive in its market 
(Wright 1997), the ECM process can ultimately consume 
considerable time, money, and resources (Terwiesch and 
Loch 1999). 
 

2.1 Change Propagation 

 
Among the reasons why changes can be so abundant and 
costly is the occurrence of change propagation.  Change 
propagation can be defined as the Òprocess by which a 
change to one part or element of an existing system [or 
product] configuration or design results in one or more 
additional changes to the system, when those changes 
would not have otherwise been requiredÓ (Giffin et al. 
2009).  In other words, change propagation occurs when 
making a single change ultimately requires the 
implementation of multiple changes in order to achieve 
the objective of the intended redesign. 

For clarity1, this research has adopted the term parent-
child propagation to refer to the act of one change (the 
parent) yielding an immediate descendant change (the 
child).  Fig. 2 shows a single change that yields four 
generations of descendants through recursive parent-child 
propagation.  Propagation over this many generations has 
been reported in the literature (Clarkson et al. 2004) and 
will be reaffirmed in Section 5Õs case study. 

Change propagation occurs because of the 
interdependencies among the components and 
subsystems of modern products and systems (Earl et al. 
2005; Suh and de Weck 2007).  Eckert et al. (2004) 
explains that different parts of a product exhibit different 
propagation behavior.  Components that are absorbers 
tend to internalize changes without causing many 
changes to other components.  By contrast, multipliers 
give rise to more changes than they absorb.  Meanwhile, 
carriers absorb and cause a roughly equal number of 
changes.  Finally, constants do not contribute to any 
propagation; they are only affected by isolated changes or 
do not change at all. 

Because of its significant implications for engineering 
change management, product development, and business 
strategy, the topic of change propagation has received 
considerable research attention over the last decade.  
Efforts to quantitatively characterize, predict, control, and 
prevent change propagation, though limited, have 
primarily drawn on network-based models and analyses. 

                                                
1 Otherwise it can be confusing whether the term ÒpropagationÓ 
refers to a single instance or repeated instances of parent-child 
propagation. 

 
Fig. 2 In this change network, unidirectional and bidirectional 
arrows indicate parent-child and sibling-sibling relationship between 
changes, respectively 

2.2 Network-based Analysis of Change Propagation 

 
Change propagation research has quite naturally turned to 
network-based models and analyses rooted in graph 
theory.  After all, many aspects of product development 
and project management (e.g., products, processes, 
organizations) are readily modeled as networks. 

At the heart of most previous research on change 
propagation is the popular tool known as the Design 
Structure Matrix (DSM) (Steward 1980; Eppinger 1994).  
A DSM is an adjacency matrix representation of a directed 
network.  The DSM can be used to represent a product 
consisting of interconnected components, a process 
consisting of tasks, or an organization consisting of 
people.  The DSM concept has proven extremely 
influential in the quantitative investigation of change 
propagation.  For instance, Clarkson et al.Õs (2004) 
Change Prediction Model (CPM) uses the DSM 
representation of a product to trace potential propagation 
paths among its interconnected components.  Similarly, 
Giffin et al. (2009) extend the DSM concept to create the 
Component Propagation DSM (Component-PDSM) to 
identify instances of change propagation from one 
component to another.2  In kind, one can calculate the 
Change Propagation Index (CPI), which quantifies a 
componentÕs propagation behavior by comparing the 
numbers of changes that propagate in and out of that 
component (Suh and de Weck 2007; Giffin et al. 2009). 

Despite the progress of change propagation research to 
date, a new approach, specifically a multilayer network 
one, may be beneficial to the field.  Broader literature on 
product development and project management has 
emphasized the existence of multiple network layers, or 
domains, in an engineering endeavor, including product, 
process, and social layers.  To date, change propagation 
research has not, at least explicitly, taken a multilayer 
network approach.  To be fair, tools and metrics like the 
Component-PDSM and CPI are arguably double-layer 
approaches, since they do consider both the product layer 
and change (i.e., process) layer.  Still, other contributions 
like the DSM and CPM rely on a single-layer model of the 

                                                
2 Giffin et al. (2004) actually names this tool the Change DSM or 
DDSM, but this paper substitutes the word ÒpropagationÓ for 
ÒchangeÓ to help distinguish it from a DSM used to represent a 
change network. 
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design and change layers, respectively.  Moreover, 
change propagation research surprisingly has yet to 
investigate the social layer in a substantially quantitative 
way.  Nevertheless, the literature has at least qualitatively 
stressed the significance of teamwork, individual skills, 
and system awareness in the ECM process (Huang and 
Mak 1999; Jarratt et al. 2005). 
 

2.3 Multilayer Network Approaches 

 
Multilayer, or multi-domain, network approaches are 
prevalent in the literature on product development and 
project management.  The premise of these approaches is 
that the success of product development depends 
significantly on the interactions within and among the 
various domains (e.g., product, process, social, etc.) of 
the development effort.   

For example, Danilovic and Browning (2007) propose 
a variation of the DSM called the Domain Mapping 
Matrix (DMM), which captures the dependencies 
between different domains of product development, 
including the product design, development process, and 
development organization.  BartolomeiÕs (2007) 
Engineering Systems Matrix (ESM) augments the DSM 
even further.  The ESM incorporates several domains 
(e.g., technical, functional, process, social, and 
environmental) into a single adjacency matrix 
representing edges within and between nodes in each 
domain.  By grouping the nodes by domain, the ESM 
essentially contains DSMs on the diagonal and DMMs in 
the upper and lower triangles.  Finally, Eppinger (2001) 
advocates a multi-domain model most analogous to the 
one proposed in this paper.  He specifically investigates 
whether interactions within the product, process, and 
organization domains tend to follow a common, 
predictable pattern (Morelli et al. 1995, Sosa et al. 2000, 
Eppinger 2001; Sosa et al. 2007). 

Thus, the stage is set for further analysis of product 
development using a multilayer network approach.  This 
paper extends the approach to the analysis and 
management of change propagation. 
 

3 Multilayer Network Model of Change Propagation 

 
This section introduces a multilayer network model of 
change propagation.  The model is composed of three 
layers that contribute to change propagation:  the product 
layer, change layer, and social layer.  As illustrated in 
Fig. 3, the multilayer network model provides an intuitive 
and insightful representation of change propagation and 
the overall engineering change management process.  
That is, engineers in the social layer work on changes in 
the change layer that affect components in the product 

layer.  The multilayer network model captures the 
interactions within and across the product layer, change 
layer, and social layer.   
 

3.1 Elements of the Model 

 
Each layer of the multilayer network model consists of a 
distinct, directed network composed of nodes connected 
by intra-layer edges. 
 

3.1.1 Product Layer 

 
The product layer is a network representation of the 
product or system being designed.  The nodes of the 
network represent hardware components, software 
components, and associated documentation (e.g., 
requirements, specifications, and drawings).  The (intra-
layer) edges of the network represent technical interfaces 
among the components (or subsystems).  The interfaces 
can be physical connections (e.g., by bolts or welding) or 
channels for the flow of energy (e.g., electrical power and 
heat), mass (e.g., fuel), and information (e.g., software 
inputs/outputs and control signals such as actuator 
commands) (Suh and de Weck 2007).  If a technical 
interface has direction (e.g., in the case of a flow channel), 
the edges can be directed.  An edge might also identify a 
functional dependency that relates design variables to a 
desired performance level (e.g., in an optical system, 
image resolution is a function of aperture diameter). 
 

 
 

Fig. 3 Multilayer network model 
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3.1.2 Change Layer 

 
The change (or process) layer is a network representation 
of change propagation.  The nodes of the network 
represent individual changes or change requests (CRs).  
The (intra-layer) edges of the network represent 
propagation relationships among the changes.  As in Fig. 
2 and Giffin et al. (2009), directed edges can identify 
parent-child relationships, while bi-directional edges can 
identify sibling relationships between children of the 
same parent, or two changes related in a significant way. 
 

3.1.3 Social Layer 

 
The social layer is a network representation of the 
organization.  The nodes of the network represent people, 
e.g., teams, sub-teams, or individual engineers or 
employees.  The (intra-layer) edges of the network 
represent various relationships among individuals and 
groups.  For example, the edges might correspond to 
theoretical or actual communication links (Morelli 1995).  
The edges might also reflect an organizationÕs 
hierarchical structure or chain of command. 

A possible augmentation to all these intra-layer edge 
definitions is a measure of edge strength.  After all, a 
strong connection between nodes might exhibit different 
behavior than a weaker connection.  For example, Sosa et 
al. (2000) uses a five-point scale to denote the criticality 
of interactions among product components, according to 
whether the interaction is required (+2), desired (+1), 
indifferent (0), undesired (-1), or detrimental (-2) to the 
functionality of the product.  Their case study of the 
development of a commercial aircraft engine found that 
strong technical interfaces in the engine, compared to 
weaker ones, more often elicited communication in the 
corresponding organization domain.  Consequently, it 
might be useful to incorporate edge strength into the 
multilayer network model, if an objective and consistent 
quantification scheme is employed. 
 

3.1.4 Inter-layer Edges 

 
The other half of the multilayer network model consists 
of the inter-layer edges that essentially link the three 
layers together.  Unlike the intra-layer edges, the inter-
layer edges are nominally undirected (or essentially, 
bidirectional).  The inter-layer edges represent the critical 
relationships between the layers of the model: 
 
¥ Social-to-change edges relate the social layer to the 

change layer, depending on which engineers work on 
(e.g. propose, evaluate, approve, or implement) each 
change.  If engineer m works on change n, then an 

inter-layer edge would connect node m in the social 
layer and node n in the change layer. 

¥ Change-to-product edges relate the change layer to the 
product layer, depending on which component is 
affected by each change.  If change n involves a 
redesign of component k, then an inter-layer edge 
would connect node n in the change layer and node k in 
the product layer.   

¥ Product-to-social edges relate the product layer to the 
social layer, depending on which engineers are in 
charge of designing, redesigning, or sourcing each 
component.  If engineer m is assigned to component k, 
then an inter-layer edge would connect node m in the 
social layer and node k in the product layer.  Fig. 3 
does not illustrate the product-to-social edges, but they 
could be included, if desired. 

 
In some scenarios, such as the cases studied by Eppinger 
(2001), a one-to-one mapping exists between the product, 
change, and social layers.  In other words, engineer m is in 
charge of component m and, consequently, engineer m 
implements all changes that affect component m.  Such a 
mapping facilitates easier analysis and interpretation.  
However, other scenarios might have engineers focusing 
on various overlapping areas of the product at once.  For 
instance, the program in Section 5Õs case study notably 
had individual engineers working on multiple changes 
involving multiple areas of the system. 
 

3.2 Data Requirements 

 
The construction of a multilayer network model requires 
detailed information about the product development effort 
under investigation.  Table 1 summarizes the type of data 
needed to construct each model element described in 
Section 3.1. 
 
Table 1 Data requirements for different elements of the multilayer 
network model 
 

Model Element Data Required 
Product Layer  Identified components 
Change Layer Identified changes Nodes 
Social Layer Identified engineers 

Product Layer Documented interfaces 
between components 

Change Layer Documented propagation  
relationships among changes 

Intra- 
Layer 
Edges 

Social Layer Documented communication 
among engineers   

Social-to-Change Record of engineer who 
worked on each change 

Change-to-Product Record of component 
affected by each change 

Inter- 
Layer 
Edges 

Product-to-Social Record of engineer in charge 
of each component 
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As shown in Table 1, the multilayer network model is a 
data-driven approach to the analysis and management of 
change propagation.  Of course, different amounts and 
types of data are available at different stages of product 
development.  As such, the multilayer network model has 
different utility at different stages, i.e., before, during, 
and after product development.  Before product 
development, complete data on the nodes and edges will 
likely not exist, because all the components, change 
requests, engineers, and their relationships will not have 
manifested themselves yet.  However, some insight may 
be gained by modeling analogous development efforts 
from the past, especially since most products are 
adaptations of predecessor products (Giffin et al. 2009).  
Later, during product development, data can be 
progressively collected through configuration 
management, which allows the construction of a 
multilayer network model with whatever fidelity and 
completeness that the organization wishes.  Analysis of 
the model during product development can be used to 
guide change impact analysis, organization structuring, 
design strategy, and human resource management.  
Finally, after product development, analysis of the 
multilayer network becomes a lessons-learned effort.  At 
this stage, an organization can use all the data collected 
over the course of product development to assess its 
performance in retrospect.  Moreover, the data then 
become useful for academic research to further 
investigate industryÕs experience with change 
propagation. 
 

3.3 Hypothetical Application 

 
A hypothetical application should illustrate how to 
construct a multilayer network model for a given product 
development effort. 

Suppose three engineers, John, Susan, and David, are 
designing a Sallen-Key low-pass filter (Fig. 4) using two 
resistors (R1 and R2), two capacitors (C1 and C2), and a 
unity-gain amplifier.  The amplifier has already been 
purchased.  John is in charge of choosing the resistors, 
Susan is in charge of choosing the capacitors, and David 
is in charge of setting performance requirements, i.e., 
cutoff frequency (! c) and quality factor (Q).  The 
resistors (in ohms) and capacitors (in farads) determine 
the low-pass filterÕs performance (! c in Hz and Q 
unitless) according to Eq. 1 and Eq. 2. 
 

 
Fig. 4 Sallen-Key low-pass filter to be designed 

 

Fig. 5 Multilayer network model of the low-pass filter example 
 

                  Eq.  1 

 

                  Eq.  2 

 
Suppose the low-pass filter has been designed to have a 
baseline cutoff frequency of ! c = 10 kHz, and quality 
factor Q = 0.5 (i.e., critically damped), per DavidÕs initial 
performance requirements.  However, some changes 
become necessary.  David decides that the cutoff 
frequency should be 5 kHz instead of 10 kHz (change #1), 
but that the quality factor should remain at Q = 0.5.  To 
facilitate this requirements change, the team initially plans 
for John to change R1 (change #2), but that change is 
rejected because the resistors have already been ordered.  
Consequently, Susan must reselect the capacitors.  Susan 
realizes that she cannot simply change one of the 
capacitors to accomplish the task of reducing ! c while 
maintaining the same Q.  In effect, the change to one 
capacitor will propagate, causing the other capacitor to 
change as well.  Susan ultimately decides to double the 
original capacitances of C1 (change #3) and C2 (change 
#4) to reduce ! c by a factor of two (10 kHz to 5 kHz) 
while maintaining Q = 0.5. 

Fig. 5 shows the multilayer network model 
corresponding to this hypothetical application.  The model 
captures all the elements of the change activity that 
occurred.  The social layer contains nodes for John, Susan, 
and David, with edges representing their communication 
links.  The change layer contains nodes for changes #1-4 
with edges representing propagation relationships.  The 
edges indicate that change #1 had two children: change #2 
(rejected) and change #3 (accepted) which also had a child 
in change #4.  The product layer contains nodes for 
requirements and electrical components, with edges 
representing technical constraints.  All the nodes in the 
product layer are connected to one another because ! c, Q, 
R1, R2, C1, and C2 all depend on one another through Eq. 1 
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and Eq. 2.  The inter-layer edges in Fig. 5 complete the 
story.  The social-to-change edges represent how David, 
John, and Susan worked on changes #1, #2, and #3-4, 
respectively.  The change-to-product edges represent how 
change #1, #2, #3, and #4 affected ! c, R1, C1, and C2, 
respectively.  For visual ease, Fig. 5 does not show any 
product-to-social edges.  However, if drawn, these edges 
would represent how John, Susan, and David were in 
charge of R1 and R2, C1 and C2, and ! c and Q, 
respectively. 
 

4 Multilayer Network Tools and Metrics 

 
This section presents a baseline repository of tools and 
metrics applicable to the multilayer network model.  The 
model creates a framework for an array of potential tools 
and metrics for analyzing and managing change 
propagation.  Tools here refer to methods for analyzing or 
visualizing the nodes and edges of the model, while 
metrics refer to quantitative or quantitative measures for 
characterizing them.  Any use of the multilayer network 
model will focus on one layer alone or multiple layers 
simultaneously.  Consequently, it is useful to consider 
any tool or metric as being single-layer, double-layer, or 
triple-layer in origin, depending on the number of layers 
being invoked. 
 

4.1 Baseline Repository 

 
Table 2 summarizes a baseline repository of tools and 
metric by categorizing each time according to the specific 
layer or layers it targets.  The displayed matrix has a row 
and column for each layer of the model.  As such, the 
items located along the diagonal are single-layer tools 
and metrics for the corresponding individual layer.  The 
items in the upper-right triangle are double-layer tools 
and metrics for the corresponding pairs of layers.  
Finally, the items in the lower left triangle are triple-layer 
tools and metrics for all three layers at once. 

As denoted by references, the repository in Table 2 
contains many tools and metrics that have already been 
proposed and utilized in the literature on change 
propagation, product development, and project 
management.  Although past researchers did not always 
explicitly classify their work in a multilayer context, their 
contributions are easily incorporated into the multilayer 
network model.  Consequently, the multilayer network 
model serves as a comprehensive paradigm that unifies 
past research in a common framework. 
Table 2 also contains a few new tools and metrics (marked 
with a Ò*Ó) that are being proposed for the first time in this 
paper.  Among these are the Engineer Propagation DSM 
(a double-layer tool) and the Engineer Change 

Propagation Index (a double-layer metric), which aim to 
quantitatively analyze the social layerÕs influence on 
change propagation.  Another new metric in the repository 
is Propagation Directness (a double-layer metric) which 
counts the number of interfaces spanned by an instance of 
parent-child propagation. 
 

4.2 Data Requirements for Tools and Metrics 

 
As discussed in Section 3.2, the construction of a 

multilayer network model requires data collection and 
mining.  Table 3 specifies types of data (i.e., elements of 
the model) needed to exercise any of the multilayer 
network tools and metrics in practice.  Such data mining 
can occur after completion or, better yet, during product 
development.  The displayed matrix has a row for each 
tool or metric and a column for each type of intra-layer 
and inter-layer edge.  Check marks (! ) denote which edge 
data would be required for each tool and metric.  For 
example, to construct a DSM for a given layer, an 
organization would need to know the intra-ledges for that 
layer.  To construct a Component-PDSM, an organization 
would need the intra-ledges of the change layer (i.e., 
propagation relationships) and the change-to-product 
inter-layer edges (i.e., which changes affect which 
components).  Intuitively, single-layer tools and metrics 
only require intra-layer edges.  By contrast, the double-
layer and triple-layer tools all tap into the inter-layer edges 
as well, because they focus on multiple layers 
simultaneously. 

The following subsections develop the baseline 
repository of tools and metrics, both old and new.  Sections 
4.3, 4.4, and 4.5 review the single-layer, double layer, and 
triple-layer tools and metrics, respectively, that already 
exist in the literature.  Section 4.6 discusses the additional 
tools and metrics that are being proposed for the first time 
in this paper.  Each tool and metric, old and new, is 
critically evaluated in terms of its implications for the 
analysis and management of change propagation in context 
of the multilayer network model. 
 

4.3 Single-Layer Tools and Metrics  

 
Single-layer tools and metrics focus on one layer of the 
multilayer network model at a time.  These tools and 
metrics highlight intra-layer characteristics of great 
significance for engineering change management.  The 
single-layer metrics (graph properties and node attributes), 
in particular, have been employed in the change 
propagation literature, but without any formal 
development.  This discussion hopes to officially establish 
their utility for future research. 
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Table 2 Baseline repository of tools and metrics for the multilayer network model 
 

 Product Change Social 

P
ro

du
ct

 

Tools 
¥ Design Structure Matrix (1) 
¥ Change Prediction Model (2) 
 
Metrics 
¥ Graph properties (3) 
¥ Node attributes, e.g., component 

class (5) 

Tools 
¥ Domain Mapping Matrix (4) 
¥ Component Propagation DSM (5) 
¥ Change Prop. Frequency Matrix (5) 
 
Metrics 
¥ Component Change Propagation Index (5, 6) 
¥ Change Acceptance/Reflectance Rate (5) 
¥ Propagation Directness* 

Tools 
¥ Domain Mapping Matrix (4) 
¥ Alignment Matrix (7) 
 

C
ha

ng
e 

 

Tools 
¥ Design Structure Matrix (1) 
¥ Change motifs (5) 
 
Metrics 
¥ Graph properties (3) 
¥ Node Attributes, e.g., approval status (5), 

magnitude (5) 

Tools 
¥ Domain Mapping Matrix (4) 
¥ Engineer Propagation DSM* 
 
Metrics 
¥ Engineer Change Propagation Index* 
¥ Proposal Acceptance Rate (8) 
 

S
oc

ia
l 

 
Tools 
¥ Engineering System Matrix (9) 

 
Metrics 
¥ Graph properties (3) 

Tools 
¥ Design Structure Matrix (1) 
 
Metrics 
¥ Graph properties (3) 
¥ Node attributes, e.g., organizational 

role*  

(1) Steward 1981 
(2) Clarkson et al. 2004 
(3) Newman 2003 
(4) Danilovic and Browning 2007 
(5) Giffin et al. 2009 

(6) Suh and de Weck 2007 
(7) Sosa et al. 2007 
(8) Giffin 2007 
(9) Bartolomei 2007 
* Proposed first in this paper 

 
         

 

Single-layer          Double-layer         Triple-layer 

 
Table 3 Edge data required for multilayer network tools and metrics 
 

Intra -Layer Edges Inter -Layer Edges 

 Product Layer 
(technical 
interfaces) 

Change Layer 
(propagation 
relationships) 

Social Layer 
(comm. 
links) 

Social- 
to- 

Change  

Change- 
to- 

Product  

Product- 
to- 

 (fSocial 
DSM (for each layer) !  !  !     
CPM !       Tools 
Change Motif  !      

Single- 
Layer 

Metrics Graph properties (for 
each layer) !  !  !     

DMM (for each pair of 
layers)    !  !  !  

Component PDSM  !    !   
CPFM  !    !   
Product DSM/ 
Component PDSM 
Overlay 

!  !    !   

Alignment Matrix !   !    !  

Tools 

Engineer PDSM  !   !    
Propagation Directness !  !    !   
Component-CPI  !    !   
CAI/CRI     !   
Engineer-CPI  !   !    

Double- 
Layer 

Metrics 

PAR    !    
Tools ESM !  !  !  !  !  !  Triple - 

Layer Metrics Graph properties !  !  !  !  !  !  
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Fig. 6 The DSM succinctly shows where edges exist in a network 

4.3.1 Design Structure Matrix (DSM) 

 
The primary single-layer tool from previous research is the 
DSM, which, as mentioned in Section 2.2, is a convenient 
matrix representation of a network (Steward 1981; 
Eppinger et al. 1994).  As illustrated in Fig. 6, a DSM is a 
square matrix in which element (m, n) indicates whether a 
directed edge connects node n to node m. 

One can create a separate DSM for each layer of the 
multilayer network model, i.e., a Product DSM, Change 
DSM, and Social DSM.  Clustering algorithms (Browning 
2001) exist to manipulate the rows and columns of a DSM 
to help identify groups (or clusters) of tightly coupled 
nodes, e.g., subsystems in the product layer, families of 
changes in the change layer, and teams or communication 
structures in the social layer.  The DSM has significant 
implications for engineering change management.  An 
organization can exploit each layerÕs DSM to inform better 
engineering and managerial decision, thus minimizing 
unnecessary future changes and stemming change 
propagation.  For example, the Product DSM can guide 
design architecture decisions in anticipation of the 
challenges of testing, building, integrating, and evolving a 
product (e.g., automobiles, Suh and de Weck 2007).  
Likewise, based on the Social DSM, a project manager 
might organize and co-locate teams to facilitate better 
communication.  Such strategies are vital to engineering 
change management, as Eckert et al. (2004) suggests that 
insufficient communication is a primary cause of redesigns 
throughout product development. 
 

4.3.2 Change Prediction Model (CPM) 

 
As mentioned in Section 2, CPM is a single-layer tool 
developed for predicting the occurrence of change 
propagation.  The tool focuses specifically on the product 
layer.  CPM uses the Product DSM to identify potential 
propagation paths between components, under the 
assumption that changes propagate along the technical 
interfaces of a product.  The final product of the tool is a 
risk matrix indicating the likelihood and impact of 
propagation between each and every component in the 
product (Clarkson et al. 2004).  Another element of the 

CPM tool is a set of visualization techniques for viewing 
potential propagation paths (Keller et al. 2005). 
 

4.3.3 Change Motifs 

 
Giffin et al.Õs (2009) change motif analysis is another 
single-layer tool that focuses on the change layer alone.  
The premise here is that change networks can be 
decomposed into motifs, or building blocks, each with 
distinct patterns of changes and propagation relationships.  
Motif distributions reveal what types of propagation 
patterns are dominant in a product. 
 

4.3.4 Graph Properties 

 
Several single-layer metrics already exist in the literature 
as well.  For starters, graph theory (Diestel 2006) provides 
a number of properties generally applicable to any layer of 
the multilayer network model.  For example, the 
clustering coefficient is a graph property that measures 
how much a networkÕs nodes tend to cluster together 
(Newman 2003).  In the product layer, the clustering 
coefficient roughly relates to a productÕs modularity.  
Integrative products, which have relatively high clustering 
coefficients, may be more susceptible to change 
propagation, since their components are more 
interdependent.  Another potentially useful graph property 
is centrality, which is a gauge of the importance of a node 
in a network.  One measure of a nodeÕs centrality is its 
degree, or the number of edges incident upon it (Newman 
2003).  In the product layer, a componentÕs centrality may 
reflect its potential propagation behavior.  Namely, 
components with higher centrality might be more involved 
in change propagation, as parents or children. 
 

4.3.5 Node Attributes 

 
Node attributes constitute another set of single-layer 
metrics.  Node attributes refer to qualitative or quantitative 
measures of a node, other than nodal graph properties.  
The attributes of a node might influence its contributions 
to change phenomena.  

Nodes attributes in the product layer describe the 
product components.  For example, one node attribute is 
component class, i.e., whether a component is hardware, 
software, or documentation.  Different component classes 
might exhibit different change propagaton behavior.  In 
the program from Section 5Õs case study, the requirements 
document was naturally a strong multiplier, because this 
component essentially recorded changes to system 
requirements, which (almost) always led to redesigns 
among the various technical parts of the system.  By 
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contrast, certain software algorithms behaved as constants, 
because altering them was cost and time prohibitive. 

Changes (i.e., nodes) in the change layer might be 
described by nodes attributes such as magnitude (in terms 
of time and resources consumed) and approval status (i.e., 
whether the change is accepted, rejected, or pending).  
Giffin et al. (2009) found that high-magnitude changes 
were more likely to be approved than low-magnitude ones 
because many of the low-magnitude change requests were 
deemed to be non-essential.  Others attributes in the 
change layer include process time and cost. 

Finally, node attributes in the change layer describe 
individual engineers (or teams). For instance, engineers 
have various organizational roles (e.g., specialists, team 
lead, systems engineer, or manager), which will likely 
impact his or her responsibilities in the engineering change 
management process.  Section 5Õs case study will 
quantitatively elaborate on this relationship further. 
 

4.4 Double-Layer Tools and Metrics  

 
Double-layer tools and metrics focus on two-layers 
simultaneously by taking into account the inter-layer edges 
between them. 
 

4.4.1 Domain Mapping Matrix (DMM) 

 
The first notable double-layer tool is Danilovic and 
BrowningÕs (2007) DMM.  As introduced in Section 2, the 
DMM is a matrix representation of the dependencies 
between two domains.  In the language of this paper, 
element (m, n) of the DMM indicates whether an inter-
layer edge exists between node m in the former layer and 
node n in the latter.  A DMM can be created for any pair 
of layers in the multilayer network model.  Danilovic and 
Browning argue that the DMM can help an organization 
make better decisions in light of these inter-layer 
dependencies. For example, they explain how a multi-
project business might cluster a project-to-organization 
DMM to identify ways to coordinate its projects with its 
organizationÕs technical competencies.  Likewise, the 
program in Section 5Õs case study restructured its 
organization based on similar logic.  In the middle of 
system development, the program created integrated 
program teams (IPTs), each of which united the designers, 
testers, and integrators for a particular software segment.  
Before this restructuring, these people were 
disadvantageously dispersed in the organization.  
Interestingly, this strategic move led to a surge of change 
requests, because the multidisciplinary IPTs fostered better 
communication between people dealing with the same 
parts of the system.  The IPTs unsurprisingly discovered a 
large number of problems with initial design decisions.  

Thus, DMM-type strategies can have significant 
implications for engineering change management. 
 

4.4.2 Component Propagation DSM 

 
Another double-layer tool from the literature is the 
Component Propagation DSM (Component-PDSM) (also 
called the Òchange DSMÓ by Giffin et al. 2009).  As 
introduced in Section 2.2, a Component-PDSM is a square 
matrix in which element (m, n) indicates whether a parent 
change in the instigating component n spawned a child 
change in the affected component m.  As such, a 
Component-PDSM combines the change layerÕs intra-
layers (to find instances of parent-child propagation) with 
the change-to-product inter-layer edges (to determine 
which two product components were affected by the 
parent and child changes).  The Component-PDSM 
provides a great visual account of propagation activity.  
Fig. 7 shows a hypothetical Component-PDSM, which 
indicates, for example, that a change propagated from 
component #1 to component #2. 
 

4.4.3 Change Propagation Frequency Matrix (CPFM) 

 
A useful derivative of the Component-PDSM is another 
double-layer tool called the Change Propagation 
Frequency Matrix (CPFM) (Giffin et al. 2009).  The 
CPFM is a square matrix in which element (m, n) gives 
the frequency (0 to 1) with which a parent change in 
component n led to a child change in component m.  The 
CPFM might give some indication of the strength of 
dependencies among product components.  Mechanical 
systems, for example, frequently propagate changes 
because of the strong interdependence of their physical 
parts.  Indeed, Eckert et al. (2004) reports that in a 
helicopter design, a change to the engine almost always 
causes a change to the bare fuselage, the transmission, the 
avionics, and the engine auxiliaries, among others.  By 
contrast, modular software systems may be less prone to 
change propagation.  For example, the software-
dominated system in Section 5Õs case study usually 
exhibited a low propagation frequency of less than 10% 
between all subsystems (Giffin et al. 2009). 
 

 
Fig. 7 The Component-PDSM succinctly shows where propagation 
occurred within a product design 
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Fig. 8 Overlay of the Product DSM and Component-PDSM 

4.4.4 Product DSM/Component-PDSM Overlay 

 
Another useful perspective comes from overlaying the 
Component-PDSM with the Product DSM (i.e., the DSM 
of the product layer).  Such a double-layer overlay reveals 
where propagation was predicted versus where it actually 
occurred.  The reasoning here is that the Product DSM 
captures all the technical interfaces among the components 
of a product.  Consequently, the Product DSM should 
predict where parent-child propagation could occur, 
assuming it can only occur between immediately adjacent 
components.  Meanwhile, the Component-PDSM shows 
where parent-child propagation actually occurred.  Thus, 
the overlay of these matrices compares theory with 
practice.  Giffin et al. performed an equivalent overlay in 
(2009), but did not formalize the tool in detail. 

Fig. 8 shows the overlay of the hypothetical DSM and 
Component-PDSM from Fig. 6 and Fig. 7, respectively.  
The overlay exposes four types of behavior: 
¥ Predicted and Propagated (PP) means that the Product 

DSM predicted propagation by virtue of the 
componentsÕ technical interface, and that propagation 
did actually occur as predicted.  This behavior, called 
direct propagation, is relatively tolerable, because 
propagation, while still non-ideal, occurred as expected. 

¥ Predicted and Not Propagated (PN) means that the 
Product DSM predicted propagation, but that 
propagation did not occur.  This behavior is 
advantageous, because somehow direct propagation 
was avoided despite component adjacencies.  Possible 
explanations include (a) clever design choices avoided 
propagation (b) the changes were of too low magnitude 
to propagate, and (c) good communication between 
engineers prevented propagation. 

¥ Not Predicted and Propagated (NP) means that the 
product DSM did not predict propagation, yet 
propagation still occurred.  This behavior, called 
indirect propagation, contradicts the conventional 
belief that parent-child propagation can only occur 
between adjacent components.  One explanation for this 
behavior is that the Product DSM is incomplete (i.e., 
missing technical interfaces), such that the indirect 
propagation is actually just direct propagation in 

disguise.  The occurrence of indirect propagation will 
be investigated further in Section 5Õs case study. 

¥ Not Predicted and Not Propagated (NN) means that 
the product DSM did not predict propagation and 
propagation did not occur.  This behavior is expected 
and the least interesting. 

 
Given any of these behavior types (PP, PN, NP, and NN), 
an organization can benefit from investigating their causes 
in more depth.  When propagation did occur, whether 
predicted or not (i.e., PP or NP), the organization might 
find ways to improve its operation to avoid propagation in 
the future.  When propagation did not occur (i.e., PN or 
NN), the organization should evaluate the reasons for the 
non-propagation of changes, and formally adopt or 
encourage any good practices. 
 

4.4.5 Alignment Matrix 

 
The Alignment Matrix is a double-layer tool developed by 
Sosa et al. (2007) that looks for patterns between the 
product layer and social layer.  The Alignment Matrix 
performs an overlay of the Product DSM and the Social 
DSM.  The premise is that if components a and b are 
connected in the Product DSM, then communication 
should exist between engineers a and b in the Social 
DSM.  The Alignment Matrix discovers discrepancies 
between the two DSMs for further analysis.  One 
weakness of the Alignment Matrix is that it is only 
applicable when there is a one-to-one mapping between 
the product and the organization.  If a one-to-one mapping 
does not exist, as may be the case for large and complex 
development projects (Sosa et al. 2000), use of the 
Alignment Matrix is not as straightforward.  However, 
Eppinger (2001) and Morelli et al. (1995) have found 
successful workarounds in similar situations. 

In general, the Alignment Matrix exposes two types of 
mismatches: unidentified interfaces and unattended 
interfaces, between the Product and Social DSMs (Sosa et 
al. 2007).  An unidentified interface is a communication 
link lacking a corresponding product interface, while an 
unattended interface is a product interface lacking a 
corresponding communication link.  Unidentified 
interfaces are generally positive phenomena, while 
unattended interfaces can be detrimental when critical 
product interfaces go unnoticed.  A lack of necessary 
communication can lead to poor initial designs that need 
changing later. 
 

4.4.6 Component-CPI 

 
The first of the double-layer metrics is the Component 
Change Propagation Index (Component-CPI, formerly 
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just ÒCPIÓ), which quantifies a product componentÕs 
propagation behavior.  As defined by Suh and de Weck 
(2007) and refined by Giffin et al. (2009), the index is 
calculated by Eq. 3. 
 

            Eq.  3 

 
Through Eq. 3, the ComponentÐCPI compares the 
numbers of changes propagating in (Cin(k)) and out 
(Cout(k)) of a component.  One can determine these 
quantities from the multilayer network model.  For 
example, if change n1 spawns change n2 (as would be 
indicated by an intra-layer edge between nodes n1 and n2 
in the change layer) and changes k1 and k2 affect 
components m1 and m2, respectively (as would be 
indicated by inter-layer edges connecting n1 to k1 and n2 to 
k2), then Cin(k1) and Cout(k2) would each have to be 
incremented by 1. 

The Component-CPIÕs quantitative spectrum (-1 to 1) 
corresponds with the qualitative behavior spectrum (Sec 
2.1) proposed by Eckert et al. (2004).  For example, a 
multiplier component gives rise to more changes than it 
absorbs, which means Cout(k) > Cin(k), or CPI > 0.  
Meanwhile, a component could also be a carrier (CPI " 0), 
absorber (CPI < 0), or constant (CPI undefined).  Giffin et 
al. (2009) considered the distribution of CPI values in a 
real-world system of 46 subsystems (see Section 5Õs case 
study).  They reported the existence of 7 strong multipliers 
(CPI > 0.3), 3 weak multipliers (0.1< CPI <0.3), 6 carriers 
(-0.1 < CPI <0.1), 13 weak absorbers (-0.3 < CPI < -0.1), 
13 strong absorbers (CPI < -0.3), and 4 constants (CPI 
undefined).   

Suh and de Weck (2007) use the Component-CPI as a 
basis for embedding flexibility in a design.  For instance, 
they recommend that multipliers (and sometimes carriers) 
are prime targets for flexibility in anticipation of 
potentially costly propagation behavior by these 
components. 
 

4.4.7 Change Acceptance/Reflectance Rate 

 
Giffin et al. (2009) also defined another double-layer 
metric called the Change Acceptance Index (CAI).  CAI is 
the fraction of proposed changes ultimately accepted by a 
product component.  The CAI of component k is 
calculated by Eq. 4. 
 

     Eq.  4 

 
The related Change Reflection Index (CRI) of component 
k is calculated similarly in Eq. 5. 
 

     Eq.  5 

 
One can calculate a componentÕs CAI and CRI from the 
multilayer network model.  For example, if x changes 
have been proposed for component k, then inter-layer 
edges would connect x changes in the change layer to 
component k in the change layer.  The CAI and CRI 
would then reflect how many of those x changes were 
accepted and rejected, respectively. 

The CAI and CRI measures a componentÕs openness 
and stubbornness to accommodate change, respectively.  
Giffin et al.Õs (2009) study of a real-world system revealed 
that the large majority of subsystems were relatively 
accepting of change (CAI > CRI). 
 

4.4.8 Proposal Acceptance Rate 

 
Another double-layer metric, called the Proposal 
Acceptance Rate (PAR), measures an engineerÕs 
performance as a proposer of change.  Such a metric was 
suggested by Giffin (2007), but not developed in detail.  
When an engineer proposes a change request, the request 
is ultimately accepted or rejected.  The PAR is essentially 
an engineerÕs rate of acceptance as a proposer of changes.  
The PAR of engineer j can be intuitively calculated with 
Eq. 6. 
 

  Eq.  6 

 
One can calculate an engineerÕs PAR from the multilayer 
network model.  For example, if engineer m proposed x 
changes, then inter-layer edges would connect engineer m 
in the product layer to x changes in the change layer.  The 
PAR would then reflect how many of those x changes 
were accepted. 

An engineerÕs PAR can reflect his or her skill, attitude, 
and expertise.  A high PAR might mean the engineer is 
innovative and knowledgeable, while a low PAR might 
imply he or she tends to have ideas that are difficult to 
implement.  However, other rationalizations for the PAR 
of a particular engineer could exist.  For instance, a truly 
innovative engineer could still have a low PAR if the 
organization or product is sluggish or stubborn to make 
changes.  Conversely, a less creative engineer could still 
have a high PAR if the organization or product is 
especially receptive of change.  Section 5Õs case study will 
explore these competing explanations using PAR values 
calculated for a real-world scenario. 
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4.5 Triple-Layer Tools and Metrics  

 
Triple-layer tools and metrics consider all three layers of 
the multilayer network model at once.  Only one triple-
layer tool (the ESM) and one triple-layer metric (graph 
properties) were found in the literature. 
 

4.5.1 Engineering Systems Matrix 

 
As introduced in Section 2, BartolomeiÕs (2007) ESM is 
essentially a DSM augmented to include nodes from 
multiple domains and edges within and across those 
domains.  As such, the ESM can be a triple-layer tool.  
The ESM highlights that the multilayer network 
essentially forms a single grand network with multiple 
types of nodes and edges (similar to a multipartite graph, 
Diestel 2006). 
 

4.5.2 Graph Properties 

 
Just as graph properties were applicable to any single 
layer, they can also help describe the grand network 
formed by all three layers.  In the context of the grand 
network, all nodes and edges are treated equally.  
Consequently, the graph properties of individual nodes 
take on new meaning in the grand network relative to their 
properties in their respective single-layer domains.  
Overall, graph properties of the grand network, such as 
centrality, can provide useful insights into the relative 
influence of items in the grand scheme of engineering 
change management.  For instance, an organization could 
look for components of high centrality in the grand 
network to find critical spots in the product.  A highly 
central component is likely the subject of extensive 
change.  The organization may consider redesigning or 
buffering that component so that it does not consume so 
much time, money, and resources in the future.  Similarly, 
an engineer of high centrality in the grand network is 
likely a systems engineer, high performer, or go-to person 
in the organization.  By contrast, an engineer of low 
centrality might be a specialist, an underperformer, or 
someone who is underutilized or only partially assigned to 
the project. 
 
Table 4 Newly-introduced multilayer network tools and metrics 
 

 Name Layers 

Tools Engineer Propagation DSM Change 
& Social 

Engineer Change Propagation Index Change 
& Social Metrics 

Propagation Directness Product 
& Social 

 

 
Fig. 9 Engineer Propagation DSM for hypothetical application 

4.6 New Tools and Metrics 

 
Thus far, previous research has provided a good number 
of tools and metrics applicable to the multilayer network 
model.  However, the repository still seems to have a few 
weak areas, particularly if one wishes to analyze the social 
layer.  Indeed, the literature on change propagation has 
lacked substantial quantitative treatment of the people 
involved in the change process.  This paper establishes a 
couple of new tools and metrics for this very purpose:  the 
Engineer-Propagation DSM and the Engineer-Change 
Propagation Index.  Another new item introduced here is 
a metric called Propagation Directness, which counts how 
many technical interfaces are spanned by an instance of 
parent-child propagation.  These new additions to the 
repository are summarized in Table 4. 
 

4.6.1 Engineer Propagation DSM 

 
One goal of this research was to determine a way to 
analyze the propagation effects of the social layer.  To this 
end, this paper proposes a double-layer tool called the 
Engineer Propagation DSM (Engineer-PDSM). 

The Engineer-PDSM tracks instances of change 
propagation from one engineer to another over some time 
period in the design process.  The matrix is square with a 
row (m) and column (n) for each engineer in an 
organization.  Element (m, n) of the Engineer Propagation 
DSM counts the number of times a parent change 
implemented by the instigating engineer n spawned a 
child change implemented by the affected engineer m. 

Fig. 9 shows the Engineer-PDSM corresponding to the 
three engineers (John, Susan, and David) from the 
hypothetical application in Section 3.2.  The matrix 
indicates that parent-child propagation occurred twice.  
One change propagated from David to Susan, i.e., when 
David changed ! c, Susan had to change to C1.  Another 
change propagated from Susan to himself, i.e., when 
Susan changed C1, she also had to change C2.  It should be 
noted that DavidÕs change initially triggered a change for 
John to implement as well.   However, because JohnÕs 
change (to R1) was ultimately rejected, propagation 
technically did not occur.  Consequently, that rejected 
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propagation does not appear in the Engineer-PDSM.  This 
convention is also followed by Giffin et al. (2009). 
 

4.6.2 Engineer-CPI 

 
The Engineer-PDSM can be used to calculate a 
meaningful double-layer metric called the Engineer 
Change Propagation Index (Engineer-CPI).  The 
Engineer-CPI quantifies an engineerÕs performance with 
respect to the propagation effects of his (or her) 
implementation of changes.  The Engineer-CPI is a 
number between -1 and +1, calculated by Eq. 7. 
 

              Eq.  7 

 
In Eq. 7, Eout(j) is the number of changes that propagated 
from changes implemented by engineer j.  Ein(j) is the 
number of changes implemented by engineer j that 
propagated from changes implemented by other engineers.  
More simply, Ein(j) and Eout(j) are the in-degree and out-
degree, respectively, of the Engineer-PDSM.  Returning to 
the hypothetical application, one can calculate the 
Engineer-CPIs of David, Susan, and John to be 1, 0, and 
undefined, respectively. 

It should be obvious that the Engineer-PDSM and 
Engineer-CPI are basically extensions of Giffin et al.Õs 
(2009) Component-PDSM and Component-CPI, 
respectively.  Just as the Component-PDSM captures the 
occurrence of change propagation between product 
components, the Engineer-PDSM captures the occurrence 
of change propagation between the engineers 
implementing those changes.  As such, the Engineer-CPI 
spectrum can be interpreted similarly to the Component-
CPI spectrum; namely, positive, negative, zero, and 
undefined Engineer-CPIs correspond with multipliers, 
absorbers, carriers, and constants, respectively.   

This paper proposes further that the Engineer-CPI 
spectrum should also map onto the spectrum of 
organizational roles.  That is, an engineerÕs CPI should 
theoretically correspond with his or her job description.  
Managers and systems engineers will typically be 
multipliers (Eout > Ein) because they initiate high-level 
changes that potentially require many lower-level changes 
to be completed.  For example, a manager might 
coordinate with customers and consequently change the 
requirements for a product to satisfy.  Similarly, a systems 
engineer might recognize a high-level problem (e.g., given 
unsatisfactory test results) and consequently initiate 
corrective action that propagates through the product.  By 
contrast, specialists tend to behave like absorbers (Ein > 
Eout), because they perform changes in detailed areas of the 
product where there is little chance of further propagation.  

Specialists essentially implement changes at the end of 
propagation chains.  Meanwhile, team leaders might 
correspond with carriers (Ein = Eout), since they pass on 
some high-level changes and may initiate changes on their 
own, but are also involved with low-level changes in the 
product.  Finally, constants (Ein = Eout = 0) do not seem to 
have an obvious corresponding organizational role.  If an 
engineer is a constant, that means he (or she) only 
implements isolated changes (i.e., they have no parent 
change and no children changes) or they are not involved 
in engineering change activity at all.  An interpretation of 
this behavior might be a good topic for future research.  
Section 5Õs case study explores the Engineer-CPI in 
greater detail. 
 

4.6.3 Propagation Directness 

 
Propagation Directness (PD) is another double-layer 
metric proposed for the first time here.  PD is defined as 
the number of product interfaces spanned by an instance 
of parent-child propagation.  PD can be calculated using 
the Component-PDSM and Product DSM.  Specifically, if 
the Propagation DSM indicates that a change propagated 
from component n to component m, then the PD of that 
propagation is equal to the geodesic (shortest) path from 
component n to m in the Product DSM. 

Propagation Directness reflects whether propagation is 
direct or indirect.  Direct propagation implies PD # 1, 
because direct propagation occurs when a child change 
arises in a component that is adjacent (PD = 1) or identical 
(PD = 0) to the component affected by the parent change.   
By contrast, indirect propagation has PD > 1, because a 
child change arises in a component nonadjacent to the 
component affected by the parent change.  As mentioned 
in Section 4.4.4, direct and indirect propagation 
correspond with the PP and NP behavior types, 
respectively, that may be exposed when overlaying the 
Product DSM with the Propagation DSM.   

Propagation Directness has obvious implications for 
the successful prediction of change propagation.  
Conventional wisdom says that Propagation Directness 
should always be PD # 1; in other words, all propagation 
should be direct propagation.  Accordingly, the CPM suite 
(Clarkson et al. 2004; Keller et al. 2005) notably only 
allows for direct propagation, but emphasizes that 
recursive direct propagation can form propagation chains 
spanning several product interfaces.  However, the 
program in Chapter 5Õs case study experienced a 
considerable amount of indirect propagation, in which 
Propagation Directness was usually PD = 2, and 
occasionally PD = 3. 
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5 Case Study 

 
The case under investigation here is that of a large 
technical program whose purpose was to develop a large 
scale sensor system.  The system consisted of globally 
distributed hardware and software segments.  The entire 
endeavor was very complex and involved multiple 
stakeholders and distributed users and operators. 

The software-dominated system can be decomposed 
into 46 areas, or coherent segments of software, hardware, 
and different levels of associated documentation.  These 
ÒareasÓ are roughly analogous to subsystems, the 
identities of which are abstracted in this paper for 
confidentiality reasons.  Some additional facts about the 
system were provided through interviews with one of the 
programÕs lead systems engineers. 
 

5.1 The Data 

 
The data for this case study was extracted from the 

programÔs configuration management records.  Details 
about the data extraction methodology can be found in 
Giffin et al.Õs (2009) previous analysis of the same 
program.  The full extracted dataset contains detailed 
information about 41,551 change requests (CRs) 
generated by the program over an eight year period.  Each 
CR has a separate record, as shown in Table 5.  The data 
entries in Table 5 include: 
 
¥ Identification Number Ð the CRÕs unique tracking 

number assigned in chronological order 
¥ Date Created - the month and year that the CR was first 

entered in the change management system 
¥ Data Last Updated Ð the month and year that the CRÕs 

record was last updated 
¥ Area - the system area (1 of 46) affected by the CR 

Change Magnitude - the expected effort required to 
evaluate and implement the CR on a scale of 0 to 5, 
based on the number of source lines of code affected or 
total hours required 

¥ Parent ID Ð the ID of the CRÕs parent CR, if any 
¥ Children ID(s)  Ð the ID(s) of the CRÕs children CRs, if 

any 
¥ Sibling ID(s) Ð the ID(s) of the CRÕs sibling CRs, 

including children of the same parent or CRs related in 
some other significant way 

¥ Submitter Ð the individual who first entered the CR into 
the change management system 

¥ Assignees Ð the individual(s) who formally possessed 
responsibility for the CR at some point, either as an 
evaluator or implementer 

¥ Associated Individuals Ð other individuals involved 
with the CR 

 

Table 5 Sample change request record (Giffin 2007) 
 

ID Number 12345 

Data Created, Last Updated MAR-Y5, JAN-Y6 

Area Affected 19 

Change Magnitude 3 

Parent ID 8648 

Children ID(s) 15678, 16789 

Sibling ID(s) 9728 

Submitter Eng231 

Assignee(s) Eng008 eng231 eng018 

Associated Individual(s) admin001 eng271 

Stage Originated, Defect Reason [blank], [blank] 

Severity [blank] 

Completed? 1 

 
¥ Stage Originated, Defect Reason, & Severity Ð an 

indication of whether the CR originated from a 
documented customer request; often left blank 

¥ Completed? Ð the approval status of the CR, i.e., 
accepted (1), rejected (-1), or still pending (0) 

 

5.2 Model Construction 

 
Hidden in the raw data is a very complex multilayer 
network.  In all, the dataset identifies 46 system areas, 
41,551 change requests, and 501 engineers and 
administrators that constitute the nodes of the product 
layer, change layer, and social layer, respectively.  The 
dataset also provides information on some, but not all, of 
the types of intra-layer and inter-layer edges.  Table 6 
indicates which edge data are available for this case study, 
and the source of that data.  Of the intra-layer edges, only 
those in the product layer and change layer are available.  
The product layerÕs intra-layer edges were provide by one 
of the programÕs lead systems engineers, while the change 
layerÕs intra-layer edges (i.e., propagation relationships) 
are gleaned from the ÒParent ID,Ó ÒChildren ID(s),Ó and 
ÒSibling ID(s)Ó entries for each CR record (Table 5).  Of 
the inter-layer edges, only the product-to-change and 
social-to-change inter-layer edges are known, which are 
gleaned from the ÒArea AffectedÓ and ÒAssignee(s)Ó (and 
ÒSubmitterÓ) entries for each CR record, respectively. 
 
Table 6 Data availability for case study 
 

 Edge Data Available? Source 

Product Layer Yes Interview 

Change Layer Yes Table 5 
Intra - 
Layer 

Social Layer No - 

Product-to-Change Yes Table 5 

Product-to-Social No - 
Inter - 
Layer 

Change-to-Social Yes Table 5 
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Using the available data, Fig. 10 and Fig. 11 draw the 
multilayer networks associated with two stand-alone 
change networks called 11-CR and 87-CR, respectively.  
11-CR consists of 11 related change requests evaluated 
and implemented by nine engineers and affecting only 
three of the 46 system areas.  The 87-CR network consists 
of 87 related change requests evaluated and implemented 

by 50 engineers and affecting 12 system areas.  The layers 
are drawn in a linear formation, and all the node labels 
correspond exactly with those in the raw dataset.  For 
visual ease, the edge arrows (and node labels for 87-CR) 
have been removed.  No intra-layer edges are shown in the 
social layer because the data were unavailable (Table 6). 

 
 

  
 

Fig. 10 Multilayer network model for 11-CR 
 
 

 
 

 

Fig. 11 Multilayer network model for 87-CR 
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5.3 Analysis of Engineer Performance 

 
The first thrust of this case study elucidates some 
interesting aspects of the social layer and its influence on 
change propagation and the change process.  
Specifically, the programÕs engineers are analyzed as 
implementers and proposers of change using the 
Engineer-CPI and Proposal Acceptance Rate, 
respectively. 
 

5.3.1 Implementers of Change 

 
One element of an engineerÕs work is the implementation 
of changes.  To assess an engineerÕs performance in this 
regard, this case study uses the newly proposed 
Engineer-CPI.  Fig. 12(a) shows the distribution of 
Engineer-CPIs 
calculated for all 501 engineers identified in the data set.  
The bars do not sum to 501, because nearly half of the 
engineers (226) actually behaved like constants (i.e., CPI 
undefined) who were only involved with isolated 
changes, i.e., they did not contribute to any change 
propagation. 

The authors postulated earlier that the Engineer-CPI 
should correspond to the organizational role of an 
engineer, i.e., systems engineers are multipliers (CPI > 
0), team leads are carriers (CPI = 0), and specialists are 
absorbers (CPI < 0).  The data confirms this intuition.  
To determine the effects of an engineerÕs organizational 
role on his Engineer-CPI, the engineers in this program 
were divided into two classes:  coders and 
testers/integrators.  Coders were the specialists who 
actually made changes to lines of code within the 
systemÕs software areas.  By contrast, testers and 
integrators were more like systems engineers who tested 
and integrated the system areas together.  In the absence 
of a detailed project directory, it was still possible to 
roughly classify each engineer according to a heuristic 
recommended by the lead systems engineer interviewed 

in this study.  The heuristic classified an engineer as a 
ÒcoderÓ if 60% or more of his work focused on core 
technology in the system (as opposed to support structure, 
testing tools, etc.).  Otherwise, the engineer was classified 
as a Òtester/integrator.Ó 

Fig. 12(b) and (c) show the distribution of Engineer-
CPIs for the coders and testers/integrators, respectively.  
The distributions offer some evidence that the Engineer-
CPI indeed corresponds with an engineerÕs organizational 
role.  As expected, the codersÕ distribution is heavy on the 
absorber end of the spectrum.  In fact, 74% of coders had 
negative CPIs.  By contrast, the testers/integratorsÕ 
distribution is heavy on the multiplier end of the spectrum, 
with 53% having positive CPIs.  The average coderÕs CPI 
was -0.16 (weak absorber), while the average 
tester/integratorÕs CPI was 0.13 (weak multiplier).  Thus, 
this case study offers some verification of the 
correspondence between the Engineer- CPI and 
organizational roles.  Namely, the coders (or specialists) 
tended to be absorbers, while the testers and integrators 
(or ÒsystemsÓ engineers) tended to be multipliers of 
change. 

The data also suggests\ that another influence on an 
engineerÕs CPI is the context of his work, i.e., the 
propagation behavior of the areas to which an engineer is 
assigned to implement changes.  The rationale here is that 
some engineers may be assigned to parts of the product 
that are inherently multipliers or inherently absorbers, as 
measured by their Component-CPIs.  As a result, these 
engineers may have little independent control over the 
propagation effects of their work. 

To determine the effect of Component-CPIs on the 
Engineer-CPI, the engineers in this program were divided 
in two groups:  those with absorber assignments and those 
with multiplier assignments.  An engineer was said to 
have Òabsorber assignmentsÓ if the average Component-
CPI of his assigned areas was negative (i.e., an absorber).  
Conversely, an engineer was said to have Òmultiplier 
assignmentsÓ if the average Component-CPI of his 
assigned areas was positive (i.e., a multiplier). 
 

 

 
 

            (a)       (b)               (c)        (d)   (e) 
 

Fig. 12 Distributions of Engineer-CPIs for various groups of engineers 
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Fig. 12(d) and (e) show the distribution of Engineer-CPIs 
for the engineers with absorber and multiplier 
assignments, respectively.  The distributions offer some 
evidence that the Engineer-CPI indeed depends on the 
Component-CPI of an engineerÕs assigned areas.  In fact, 
67% of engineers with absorber assignments had 
negative CPIs (i.e., were absorbers), and 75% of 
engineers with multiplier assignments had positive CPIs 
(i.e., were multipliers).  The average CPI for each group 
was -0.12 (weak absorber) and 0.44 (moderate 
multiplier), respectively.  Thus, an engineerÕs CPI 
appears to be somewhat dictated by the Component-
CPIs, of his assigned areas.  That is, those engineers who 
work on multipliers and absorbers tend to be multipliers 
and absorbers themselves, respectively. 
 

5.3.2 Proposers of Change 

 
The other element of an engineerÕs work is the proposal 
of changes.  An engineer CR will ultimately be accepted 
or rejected, depending on its costs, benefits, and risks 
from a systems perspective.  The authors propose a two-
dimensional scale for judging the performance of 
engineers as proposers of change.  The scaleÕs two 
dimensions are an engineerÕs Proposal Acceptance Rate 
(PAR) and the number of changes he/she proposed. 

Fig. 13(a) plots the position of the 382 engineers who 
proposed any changes on this scale.  Following the 
advice of one of the programÕs lead systems engineer, 
Fig. 13(a) is additionally broken into four quadrants, A, 
B, C, and D, which contain 85 (22%), 151 (40%), 123 
(32%), and 23 (6%) of the 382 engineers, respectively 
The quadrant boundaries are located at the average PAR 
and average proposal count of all 382 data points. Each 
quadrant has different implications for an engineerÕs 
performance, depending on his/her PAR and proposal 
count relative to the average engineer: 
 
¥ Quadrant A contains engineers with high PARs and 

high numbers of proposals.  These engineers might be 
termed Òhigh performers.Ó 

¥ Quadrant B contains engineers with high PARs but 
low numbers of proposals.  These engineers likely 
have great ideas and good systems awareness, since 
their change requests are usually accepted.  However, 
for some reason, they propose a relatively low number 
of change requests.  The reason for the low proposal 
count may lie in the engineerÕs organizational role, 
personality, or some other factor. 

¥ Quadrant C contains engineers with low PARs and 
low numbers of proposals.  These engineers are 
relatively passive with only moderate activity level 
and little success as proposers of change. 

¥ Quadrant D contains engineers with low PARs but 
high numbers of proposals.  There are two possible 

explanations for this troubling behavior.  One is that 
these engineers tend to have lots of ideas that are 
ultimately rejected because the proposals are not well 
conceived.  The alternative explanation is that the 
engineer is actually quite innovative, but the 
organization or product itself is stubborn or sluggish to 
change.  Whatever the explanation, these engineers 
should be managed in a more focused way since they 
generate many change requests Ð each of them causing 
some effort for proper review and disposition Ð but a 
substantial fraction of them are not implemented. 

 
Lastly, the authors propose another useful metric, RPAR, 
which is the ratio of an engineerÕs PAR to the average 
CAI of the areas targeted by his change proposals.  The 
ratio is calculated by Eq. 8, where N is the number of 
proposed change requests, and CAIn is the CAI of the area 
targeted by the nth proposal. 
 

              Eq.  8 

 
Fig. 13(b) displays a histogram of RPAR values for all the 
engineers in the program.  The majority (78%) of 
engineers have an RPAR " 1, which would indicate that 
most engineersÕ PARs match closely with the CAIs of 
their underlying assigned technical areas.  A closer look at 
the data reveals that this result is an artifact of most 
engineers always proposing change requests in the same 
area.  Consequently, the PARs and associated CAIs are 
essentially equal (RPAR = 1).  Still, 15% of engineers had 
RPAR > 1.  These engineers were able to achieve PARs 
higher than the average CAI of their targeted areas.  These 
engineers may be particularly innovative since their ideas 
were accepted by relatively change-resistant areas in the 
system.  By contrast, the 10% of engineers with RPAR < 1 
struggled to get changes accepted by relatively receptive 
areas.  These engineers may not be quite as innovative or 
systems savvy and might benefit from additional training. 
 

 
 

(a) (b) 
 

Fig. 13 Proposal Acceptance Rate (PAR) results. Each dot in (a) 
represents the position of one engineer in the program 
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Fig. 14 Overlay of Product and Component-PDSM for case study 
 

5.4 Characterization of Change Propagation 

 
The second thrust of this case study involves the general 
characterization of change propagation.  The primary 
issue addressed here is the counterintuitive phenomenon 
of indirect propagation, a common occurrence for this 
program.  Secondly, the study considers the issue of 
propagation extent, the number of generations of 
descendants propagated by an initiating change.  In this 
program, propagation always stopped after five, and 
rarely more than four, generations of descendants. 
 

5.4.1 Indirect Propagation 

 
Conventional wisdom about change propagation assumes 
that only direct propagation is possible; that is, a parent 
change in one component can only yield child changes in 
itself or immediately adjacent components (Clarkson et 
al. 2004).  However, the program discussed here 
experienced considerable indirect propagation, whereby 
child changes occurred in nonadjacent areas. 

Fig. 14 overlays the programÕs Product DSM with its 
Component-PDSM (from Section 4.4.4).  Giffin et al. 
(2009) performed an equivalent overlay for this program.  
The overlay exposes all four types of parent-child 
propagation behavior.  Overall, 15%, 9%, 9%, and 66% 
of all pairs of components exhibited PP, PN, NP, and NN 
behavior, respectively. 
 

 
Fig. 15 Distribution of Propagation Directness 

 
 

Fig. 16 Examples of change propagation (both direct and indirect) 
from case study 
 
Where propagation did occur (PP and NP), it is 
meaningful to calculate the effective Propagation 
Directness (from Section 4.6.3).  Fig. 15 displays the 
distribution of Propagation Directness values, considering 
every instance of parent-child propagation in the program 
in which the child change was accepted (regardless of the 
parent changeÕs approval status).  The distribution reveals 
that 78% of all parent-child propagation in the program 
was direct (PD # 1), while a surprising 22% was indirect 
(PD > 1).  The vast majority of indirect propagation 
occurred across two interfaces (PD = 2) and a handful (3) 
occurred across three interfaces (PD = 3).  It should be 
noted that the maximum possible Propagation Directness 
was three because the system networkÕs diameter is three. 

Delving further, Fig. 16 illustrates a few examples of 
parent-child propagation from the dataset.  In each 
illustration, the change layer contains the parent change 
and child change connected by a directed intra-layer edge.  
Meanwhile, inter-layer edges connect these changes to the 
affected areas in the product layer.  For PD > 1, the 
product layer also contains the unaffected areas on the 
shortest path between the two affected areas.  All nodes 
are labeled as they appear in the raw data.  For simplicity, 
the social layer is omitted. 

Each example in Fig. 16 has a different Propagation 
Directness value, which should be clear from the number 
of product interfaces spanned by the propagation.  In 
Example A, self-propagation (PD = 0) occurred in Area 
#8; interestingly, the parent change in this example was 
ultimately rejected.  Next, Example B shows direct 
propagation between adjacent areas (PD = 1); a change to 
Area #1, which contains requirements documentation, 
caused a change in Area #10, a core technology area.  
Example C exhibits indirect propagation; Areas #3 and 
#19 are separated by two interfaces (PD = 2) with Area #1 
in between them.  It should be noted that several geodesic 
(length-2) paths exist between Areas #3 and #19, besides 
the one through Area #1.  Finally, Example D shows one 
of only three scenarios in the entire dataset with PD = 3.  
It is important to remember that in Examples C and D, the 
intermediate areas (connecting the two affected areas) 
were unaffected by any related change, which constitutes 
indirect propagation. 

The phenomenon of indirect propagation contradicts 
conventional wisdom on change propagation.  As such, 
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one might conclude that if indirect propagation appears 
to have occurred, then the Product DSM must be missing 
some interfaces that actually exist; in other words, any 
observed indirect propagation is really direct propagation 
in disguise.  If this explanation is true, then the Product 
DSM in this case study would shockingly be missing 192 
interfaces.  This seems unlikely.  In fact, a lead systems 
engineer from the program explained that indirect 
propagation is a legitimate artifact of software system 
development.  Apparently, engineers in this program 
would frequently violate the intended structure of the 
system in order to achieve a quick solution for a 
redesign.  These ill-advised maneuvers were sometimes 
necessary during time crunches to meet development 
milestones (e.g., PDR, CDR, etc.).  For example, one 
area of the system contained System Adjustable 
Parameters (SAPs).  A SAP is a system variable kept in a 
loadable file, rather than in the software code itself.  
Many areas of the system were nominally disconnected 
from the SAP file.  Still, on occasion, a hasty redesign 
effort would change the SAP file (e.g., adding an SAP), 
despite the lack of an interface between the SAP file and 
the parent area.  In effect, a new interface was created, 
allowing a change to propagate; however, this interface 
was not part of the original Product DSM.  Thus, indirect 
propagation, though unintended, can and does occur 
during product development.  Additional case studies are 
necessary to determine if indirect propagation is a 
common artifact among software systems only, or 
hardware systems as well. 
 

5.4.2 Propagation Extent 

 
Propagation extent refers to the number of generations of 
descendants triggered by an initiating change.  Eckert et 
al.Õs (2004) study of Westland Helicopters found that a 
change rarely occurs by itself and usually propagates no 
more than four generations.  The data for the program 
here reaffirms the latter finding, but differs from the 
former. 
 

 
Fig. 17 Distribution (on a log-scale) of the number of generations 
per un-parented change 

 

 
Fig. 18 Examples of 4- and 5-generation propagation chains 
 
Fig. 17 shows the programÕs distribution of the number of 
generations flowing from each un-parented change over 
this programÕs eight year period.  An un-parented change 
is an individual change that is not the child of another 
change, and may or may not have any child changes of its 
own.   In other words, each count in Fig. 17 corresponds 
with a distinct propagation chain, whether it contains one 
isolated change or a line of descendants.  In all, the 
program generated 36,184 un-parented changes. 

The results show that change propagation in the system 
almost always (99.99%) halted after four generations, just 
as Eckert et al. (2004) reported in their study.  There was 
only a handful (5) of changes that yielded five generations 
of changes, which was the maximum number of  
generations experienced; in other words, change 
propagation always vanished after five generations.  
Examples of propagation chains from the dataset with four 
and five generations of descendants are illustrated in Fig. 
18.  All the node labels correspond exactly with those in 
the raw dataset. 

Interestingly, the results in Fig. 17Õs differ from Eckert 
et al.Õs (2004) finding that a change rarely occurs alone.  
In fact, isolated changes were actually the norm for this 
system; 91% of un-parented changes (33,152 out of 
36,184) did not have any children (i.e., zero generations 
propagated).  A deeper look into the context of each 
change may explain these statistics more.  For instance, 
the large majority (80%) of changes in this program were 
low magnitude (0 or 1 on a scale of 0 to 5), which may 
explain the generally low probability of propagation. 

Overall, propagation extent likely stands as an 
extremely context-dependent feature of change 
propagation.  This case study, at least, confirms that 
propagation vanishes after five generations of 
descendants, and rarely exceeds four generations. 
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5.5 Reflection on Case Study 

 
This case study demonstrated the practical utility of the 
multilayer network model, in addition to gaining further 
insight into industryÕs experience with change 
propagation. 

The most valuable and novel part of the study was the 
investigation of the largely unexplored social layer.  
Here, the Engineer-CPI and PAR showed promise as 
measures of personnel management and performance 
assessment.  The Engineer-CPI was used to quantify the 
propagation effects of an engineerÕs implementation of 
changes.  The data indicated that the Engineer-CPI is 
partially dependent on an engineerÕs organizational role 
and the context of his assignments.  Coders and 
engineers who worked on absorbers in the system tended 
to behave like absorbers themselves.  Meanwhile, 
testers/integrators and engineers who worked on 
multipliers in the system tended to behave like 
multipliers themselves.  The programÕs engineers were 
also analyzed as proposers of change with respect to their 
PAR and the total number of changes they proposed.  A 
more conscious assignment of roles and identification of 
engineers who fall into Quadrant D (Fig. 13a) may help 
identify those who might benefit from additional 
training. 

The case study also contributed to the general 
characterization of change propagation.  It was found 
that software-intensive systems may be particularly 
susceptible to indirect propagation, by which changes 
propagate between nonadjacent product components..  
Finally, the study found that most changes did not lead to 
any propagation.  Propagation that did occur always 
stopped after five, and rarely more than four, generations 
of descendants.  The trends revealed here contribute to 
the future ability to rank or tag change requests 
according to their likelihood of initiating long 
propagation chains. 

Ideally, the above analyses would have been 
performed during the development effort, rather than in 
post.  That way, the program could have acted on the 
results of the analyses.  This case study had the luxury of 
a rich dataset spanning the full development effort.  
However, it is unclear (and not within the scope of this 
paper) whether sufficient data would have been available 
to reveal any actionable trends in real time.  
Nevertheless, the use of retrospective statistical analysis, 
as in this case study, still has potential value for future 
development efforts.  After all, most products (and 
systems) are adaptations of predecessors and many are at 
least analogous to previous products (Giffin et al. 2009).  
Consequently, it may be possible to develop heuristic 
relationships to predict the expected change activity for a 
new product, by analyzing change statistics from 
analogous development efforts. 
 

6 Conclusion 

 
This paper presented a multilayer network model in hope 
of introducing a promising approach to the field.  
Returning to the research questions of Section 1.2, the 
authors propose the following answers based on their 
research findings: 
¥ What insights can be gained from a multilayer network 

model of change propagation?  A multilayer network 
model (Fig. 3) provides a holistic framework for 
analyzing and managing change propagation.  As 
demonstrated by the case study, new insights are 
particularly gained by inclusion of the social layer.  The 
model represents a data-driven approach to change 
management with the potential to guide design strategy, 
change impact analysis, and human resource 
management.  Only a holistic framework like the 
multilayer network model could comprehensively 
address all these areas. 

¥ What are potential tools and metrics for analyzing the 
model?  The multilayer network model provides a 
platform for an array of viable tools and metrics.  In 
Table 2, this paper proposed a baseline repository of 
tools and metrics, both old and new.  Many tools and 
metrics previously proposed in the literature are readily 
incorporated by the model.  Consequently, the model 
offers a comprehensive paradigm that unifies previous 
research in a common framework (Table 1).  Moreover, 
this paper introduced some promising new tools and 
metrics, including the Engineer-PDSM, Engineer-CPI, 
and Propagation Directness. 

¥ How can the model contribute to the prediction, 
prevention, and control of change propagation?  
Taking a multilayer view in an engineering program 
holds the promise of turning change management from 
a rather passive administrative process to a more 
predictive and proactive systems engineering process. 

 

6.1 Future Work 

 
The multilayer network model creates several avenues for 
future work, including the following: 
 
¥ This paper has only scratched the surface of the social 

layer.  Many questions remain about the social layerÕs 
contribution to propagation phenomena.  For instance, 
it may be insightful to consider an engineerÕs CPI with 
respect to an engineerÕs workload and experience, as 
well as human resource management and milestones 
during product development. 

¥ Due to a lack of data, this paper was unable to consider 
the communication patterns among engineers in the 
social layer.  The major question here is whether 
communication between engineers who are in charge of 
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interdependent components is a viable way to prevent 
or reduce change or change propagation.  Future case 
studies may want to procure the data necessary to 
analyze this relationship. 

¥ Better visualization techniques for the multilayer 
network model are needed.  Clearer drawings may 
reveal patterns and other insights more readily 
recognized and appreciated by the human brain.  The 
dataset from this case study provides an array of small 
and large change networks to test various multilayer 
network visualization techniques in the future. 

¥ One of the chief questions underlying all change 
propagation research regards the predictability of 
change and change propagation.  A prediction 
capability has both tactical and strategic implications.  
Tactical prediction is useful in the short term, such as 
when an organization assesses the impact of 
individual change requests during product 
development.  Meanwhile, strategic prediction has 
long-term utility, such as the estimation of life-cycle 
costs during the earliest stages of product 
development or while negotiating product 
requirements with prospective clients.  A multilayer 
network perspective can aid these future efforts 
through holistic, data-driven analysis. 
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