
Struct Multidisc Optim (2010) 40:17–33
DOI 10.1007/s00158-009-0381-5

FORUM ARTICLE

MDO: assessment and direction for advancement—
an opinion of one international group

Jeremy Agte · Olivier de Weck · Jaroslaw Sobieszczanski-Sobieski ·
Paul Arendsen · Alan Morris · Martin Spieck

Received: 10 October 2008 / Revised: 17 February 2009 / Accepted: 12 March 2009 / Published online: 17 April 2009
© Springer-Verlag 2009

Abstract This paper is a summary of topics presented
and discussed at the 2006 European–U.S. Multidiscipli-
nary Optimization (MDO) Colloquium in Goettingen,
Germany, attended by nearly seventy professionals
from academia, industry, and government. An attempt
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is made to accurately reflect the issues discussed by this
diverse group, qualified by interest, experience, and ac-
complishment to present an opinion about the state-of-
the-art, trends, and developments in Multidisciplinary
Design Optimization. As such, its main purpose is to
provide suggestions and stimulus for future research in
the field. The predominant content of the colloquium
was centered on aerospace, with a few contributions
from the automotive industry, and this is reflected in the
article. Due to the timeframe that has passed since the
conclusion of the workshop, the authors have updated
topics where appropriate to reflect observed develop-
ments over the past 3 years. Finally, rather than
dwelling extensively on past accomplishments and cur-
rent capabilities in MDO we focus on the needs and
identified shortcomings from the colloquium which
lead to potential future research directions. A brief
MDO background is provided to set the discussion in its
proper context.

Keywords Multidisciplinary design optimization ·
MDO · Review · Trends · Current

Abbreviations

F Functional behavior (“performance”) of a
system;

g, h Inequality constraints, equality constraints;
i, j Variable, module or subsystem index;
m Number of fixed parameters;
n Number of design variables;
p Vector of (fixed) parameters;
x Vector of design variables;
N Number of modules or subsystems;
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Y Module or subsystem inputs;
Z Module or subsystem outputs

1 Introduction

This paper is not a formal survey of the field of
Multidisciplinary Design Optimization and the authors
are not a recognized technical committee empowered
to report on MDO. They do, however, represent a
fairly broad-based group of individuals who are ac-
tively involved in MDO, both theory and applications.
The group acted as the technical organizing committee
for the 2006 European–U.S. Multi-Disciplinary Opti-
mization (MDO) Colloquium that was hosted by the
German Aerospace Center (DLR) in Goettingen,
Germany, from 17–19 May, 2006. The workshop’s em-
phasis was on uncovering gaps and shortcomings rather
than reporting on completed projects and highlighting
accomplishments, and it served as the foundation for
the content of this article. Here, the specific product
that emerged from the exchange of opinions at the
colloquium is a list of specific research issues and devel-
opment directions forming an MDO Research Agenda
that the Goettingen participants wish to contribute to
the advancement of MDO.

The article complements several other summary
articles of similar nature, ref. Giesing and Barthelemy
(1998), Bartholomew (1998), Alexandrov (2005),
Tedford and Martins (2006) and is not a comprehensive
review, as this has been done by Sobieszczanski-
Sobieski and Haftka (1997) and others. As such, we so-
licit comments to the broader engineering community
with the purpose of contributing to and inspiring
debate. Due to the broad nature of work that has been
and continues to be done in MDO, the authors admit
that certain important accomplishments may not have
been equally represented in the three-day workshop
and apologize beforehand for any such exclusions. We
emphasize that these exclusions are merely a reflection
of the colloquium audience composition and not a
result of any type of priority rating.

2 Background

The roots of MDO are found in structural optimiza-
tion. This is not without good reason as in nearly all
engineering systems there is a structure to which other
subsystems attach, and much of the subsystem inter-
actions involve the structure as a conduit. In the field
of optimization the Nonlinear Programming (NLP) for-
malism was first transplanted to structural optimization

practice in Schmit’s seminal work on a simple three bar
truss (Schmit 1971). The general formulation of an NLP
in this context is shown in (1):

min f
(
x, p

)

x = [x1 . . . xn]T , p = [
p1 . . . pm

]T

xi,LB ≤ xi ≤ xi,U B, i = 1, 2, . . . n

s.t. g
(
x, p

)
< 0, h

(
x, p

) = 0 (1)

where f is the function to be minimized, x is a n-
dimensional vector of design variables with lower and
upper bounds, p is a vector of fixed parameters that
influence the behavior of the system but cannot be
freely chosen (material properties, operating condi-
tions, . . . ), and g and h are inequality and equality
constraints, respectively. This notation can vary but
is generally widely accepted. By assigning meaning to
the design variables (e.g. beam cross sections, plate
thicknesses. . . ) and choosing a relevant objective func-
tion (e.g. mass) and constraints (e.g. maximum stress
smaller than safety factor times yield stress) the NLP
formalism became widely accepted, originally compet-
ing against, and later having been reconciled with,
the optimality criteria approach rooted in the time-
honored concept of fully-stressed design. In a few
years, the concept spread throughout structural en-
gineering and attracted interest in other disciplines,
first in aerospace applications where weight (mass) was
crucial.

Eventually, this led to inclusion of disciplines other
than structures in the structural optimization loop as
sources of data, again in aerospace first where in-
terdisciplinary coupling to structures was too strong
to be neglected. In the next logical step, the design
space (x) was extended to include variables intrinsic to
the other disciplines such as the aerodynamics (airfoil
and wing shape), aircraft performance (mission pro-
file), and propulsion (engine thermodynamics), initiat-
ing MDO on a growth path toward encompassing the
entire vehicle as a system.

Consistent with the computer technology limitations
of the time, the first MDO efforts developed at two
levels. At one level, structural, aerodynamics, and air-
craft performance analysis codes, all processing math-
ematical models whose fidelity could be categorized as
medium by the standard of the day, were nested in a
single optimization loop (Fig. 1) operating on a very
limited (a dozen or less) design variables to optimize
a system level objective such as flight range (Fulton
et al. 1974). At another level, the number of disciplines
was increased to a more complete set typical for a
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Fig. 1 NLP—simple optimization loop

conceptual design stage at the price of lowered fidelity
to gain a fairly realistic representation of the design
process at that stage (Vanderplaats 1976).

Advancing computer technology enabled higher fi-
delity codes to be processed faster and gradually erased
distinction between the above two levels leading to
large monolithic codes invoking several disciplinary
mathematical models in a single optimization loop
(see again Fig. 1). Intrinsic practical limitations of the
monolithic systems of disciplinary codes soon became
apparent (for large n) and stimulated development of
decomposition methods intended to break large tasks
into sets of smaller ones while preserving the couplings
(Balling and Sobieszczanski-Sobieski 1996). See Fig. 2
and a summary in Sobieszczanski-Sobieski and Haftka
(1997).

At a high level, one began to distinguish between sys-
tem level optimization and subsystem level optimiza-
tion, based on the fact that for an internally coupled

Fig. 2 MDO problem decomposed into two levels—NAND @
disc. level, SAND @ sys. level

system, the optimal system-level design is not simply
a collection of individually optimized subsystems.
The subsequent emergence of decomposition methods
began to differentiate MDO from pure structural op-
timization, although some of the theoretical underpin-
nings of the decomposition methodology were adopted
directly from this field, including various forms of sen-
sitivity analysis (Sobieszczanski-Sobieski et al. 1982;
Sobieszczanski-Sobieski 1990; Van Keulen et al. 2005)
and approximation methods (Barthelemy and Haftka
1993), which more recently have become known as
surrogate-based methods (Queipo et al. 2005; Simpson
et al. 2004).

It should be noted that decomposition as an ap-
proach to break a large optimization problem into an
equivalent set of smaller, independent but coordinated
problems was successfully developed and applied at
both the disciplinary and multidisciplinary levels of
optimization. At both levels, the motivation for de-
composition was the same—compression of the exe-
cution time by bringing in more resources, whether
human or computational, to operate on the problem at
hand. However, the decomposition implementations at
the disciplinary and multidisciplinary system levels dif-
fered. The former lent itself to a particular partitioning
of a set of equations that governed the given discipline.
The latter involved many diverse sets of such equations
whose interaction often posed a problem within itself,
and in large applications involved a number of different
teams of specialists. That involvement required (and
still requires) dealing with a non-mathematical but cru-
cially important set of human factors as a prerequisite
to success.

The above elements combined with the data or-
ganization in the format of the design dependence
matrix, a.k.a. N-square diagram N2, or design struc-
ture matrix DSM (Smith and Eppinger 1997). This
enabled a set of new decomposition methods sur-
veyed in (Sobieszczanski-Sobieski and Haftka 1997).
A few examples are Linear Decomposition, Collabo-
rative Optimization(Sobieski and Kroo 2000), Concur-
rent Subspace Optimization, and Bi-level Integrated
System Synthesis (Sobieszczanski-Sobieski et al. 2000).
Each of the above decomposition methods contributed
a different and specific mathematical solution to the
problem of optimization of a large and complex system.
It is their mathematical content that makes them dis-
tinct from and complimentary to the Computer Aided
Design-inspired frameworks dedicated to integration
of computer codes in the sense of streamlined data
passing, storage, retrieval, and user interface.

Another relatively recent contribution of MDO is
frameworks that allow finding optimal system designs
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for a set of desired targets or goals. This is important
as designs in industry are often driven by contractual
requirements and not by optimum performance. Such
frameworks typically seek one or more solutions that
meet a design target within a pre-specified numerical
performance. Frameworks that enable goal-seeking de-
sign are, among others, Physical Programming (Messac
1996), Analytical-Target-Cascading (Kim et al. 2003)
and Isoperformance (de Weck and Jones 2006). An
important research direction has also been the develop-
ment of more powerful model reduction methods that
retain the key information in models, while reducing
their dimensionality (Willcox and Peraire 2002).

Figure 3 provides a notional timeline of the develop-
mental history of MDO.

3 Successes and identified limitations

As one could argue that the ultimate benchmark of a
research field’s impact is indicated by the realization of

its theories into successful products through industry,
the focus in the following examples is on MDO through
an industrial perspective. Numerous MDO application
methods in various industrial sectors were presented at
the Germany workshop with the major users of this
type of technology being the aeronautical and auto-
motive industries. However, the actual use of genuine
MDO methods within industry at large (beyond auto-
motive and aerospace) is still rather limited.

3.1 Industrial successes

Within these major industrial sectors the design
process follows a regular development process involv-
ing broadly three levels of models:

1. Preliminary design that uses explicit behavior
models

2. Configuration design employing implicit low-
fidelity models

Topic 1960 65 70 75 80 85 90 95 2000 2005 2008

Schmit's 3 bar truss M

Gen opt codes appear (Aesop, CONMIN)

LaRC 1st MDO SST papers

LaRC SST MDO project

ARC ACSYNT & Applications 

LaRC IPAD project

LaRC  AOO & MDOB & IRO

EU MOB

AIAA MDO TC

AIAA/USAF bi-annual MAO Symp.

ISSMO World Congress.

NATO AGARD, RTO M M M

ASME  annual Auto Design

ICAS bi-annual opt component

AIAA/ASCE SDM

Excel M

Matlab M

Mathematica M

Integration VRD

Integration iSIGHT

Integration ALTAIR

Genesis

Integration Phoenix

Concurrent Computing

Linear decomp. M

Opt Sensit M

System Sensit M

Approximations

Approximation based decomp. 

Analytical Target Cascading (Michigan)

Collaborative Optimization (Stanford)

BLISS-LaRC

CSSO-LaRC ND

Visualization UofBuff

Commercialization BLISS M

Genetic Algorithms

Optimality criteria

NASA Glenn NPSS

Fig. 3 Notional MDO timeline (“M” indicates a milestone)



MDO: assessment and direction for advancement—an opinion of one international group 21

So
ph

is
ti

ca
ti

on
of

O
pt

im
iz

at
io

n

Representation of Physics

Disjoint analysis /
trade studies

Highly-coupled
conceptual design
systems

True Physics Modeling /
Multi-Disciplinary Analysis /
Optimization

Disjoint / single
discipline analysis

CFD
FEA/FEM

787

777

757/767
707D

is
jo

in
tD

is
ci

pl
in

ar
y

O
bj

ec
ti

ve
s

In
te

gr
at

ed
O

bj
ec

ti
ve

s

Empirical Mathematical Model

707

Fig. 4 Reaching towards full a/c MDO across successive a/c
families (adapted from Boeing, 2006 European–U.S. MDO Col-
loquium Proceedings)

3. Detailed design that employs implicit high-fidelity
models

The application of MDO methods and techniques
in industry has, for the most part, started at the detail
design stage and is now slowly, but steadily, moving
upstream into employment at the configuration and
preliminary design stages. This move parallels a similar
trend from component level design, with higher fidelity
models, towards a broader system level optimization
initially utilizing lower fidelity and/or surrogate mod-
eling. Figure 4 is a depiction of Boeing’s systematic
progress towards full aircraft MDO over successive new
aircraft families as stepping stones through the years.

As discussed, the initial application of optimization
methods focused on the creation of satisfactory struc-
tures with minimum weight, often employing techniques
at the detailed design stage that sought vertex solutions
in the design space. The field has evolved to the point
where major components are optimally designed using
very large high-fidelity models in four to five iterations,
supported by the continued development of more com-
plex digital models (Fig. 5).

Within the aircraft industry, an MDO approach is
being introduced at the detailed design stage by allow-
ing disciplines to interact in a loosely coupled manner.
Taking this approach, Boeing reports significant gains
in weight reduction on the 787 program, examples of
which are indicated in Table 1.

The automotive industry has an apparent lead over
the aerospace community in the use of system level
optimization with low-fidelity models applied at the
configuration design stage. Incorporating MDO into
the automotive configuration design phase is presum-
ably easier than undertaking this task in the aerospace
industry as disciplines in automotive engineering are
more loosely coupled. Within the automotive sector,
designs are created in a multi-attribute environment
rather than a multi-disciplinary environment. Such
aspects as noise-vibration-harshness (NVH), crashwor-
thiness, drivability, etc. provide a coupled design en-
vironment where attributes are shared through system
level variables. This allows the use of response surfaces
and more general design of experiments (DOE) pro-
cedures, placing the MDO process firmly within the
configuration design phase.

Recent developments at Dassualt (Ravachol 2006)
are geared towards taking into account that the digital
design environment must be integrated with distrib-
uted design and manufacturing teams, pushing research
into creation of methods that can accommodate virtual
design teams. Additionally, they are focusing on inte-
grating manufacturing and downstream requirements
into the MDO process. This is accomplished by using
Lagrange Multipliers, generated at the detailed design
stage, to inform engineers involved with the prelimi-
nary design stage of important downstream constraints.

3.2 Limitations identified by industry

In addition to the above successes, a number of needs
and limitations relating to the use of MDO methods
and tools in industry are evident as listed in Table 2.

Fig. 5 a Lotus optimized
engine bracket (Altair
OptiStruc). b Comp.
thickness distribution
(VR&D)

Optimum Composite Thickness Distribution
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Table 1 Examples of gains
from the application of MDO
technology

Industrial sector Component/activity Gain from MDO

Aircraft Vertical fin major aircraft Significant increase
in effectiveness

Aircraft Nacelle configuration Noise reduction with 15%
weight reduction

Aircraft Flight test program Reduced to less than 1 year
(normally 2–3 years)

Automotive Optimized structural design Time to achieve acceptable
for crash worthiness level of impact performance

reduced from 1.5 years
to 1.5 days

The last point, the immaturity of model verifica-
tion and validation—especially across a large design
space—is expanded below.

3.3 Model fidelity and validation/verification

An expensive and serious effort is made in most indus-
trial sectors to ensure that the computations process
used in the design of a product is based on models
that have been both verified and, as far as is possible,
validated. Validation implies that a finite element or
computational fluid dynamics model has been com-
pared with full scale test and found acceptable. Where
no such tests exist because the product has not yet been
constructed, structural and aerodynamic specialists will
have devised methods that, in some sense, replicate
the classical validation process using past experience,
specific structural or wind tunnel tests and sensitivity
studies. This is very time consuming and expensive but
provides models that can be relied upon to replicate the
behavior of the in-service vehicle.

In the case of an aircraft, when a structural layout
is offered to optimization algorithms within an MDO
framework, it is normal to discover that significant
changes in aircraft planform result. An experienced en-
gineer would argue that the output from these models
cannot be trusted because the structural and aerody-
namic models do not relate to the modified configu-
ration. They have not been validated for the modified
design. The underlying question being asked is, having
started the MDO process with a set of validated and
verified models, how far can these models be extended
before the results become unreliable? The same ques-
tions require answering for all the major industries that
intend on using MDO methods. There is, therefore, a
real need for industry to provide a basis whereby MDO
methods can be validated in a manner that provides
limits beyond which MDO results either cannot be
accepted or may only be interpreted as merely trend
pointers. It is accepted that this is a non-trivial require-
ment and that a significant amount of work is required.
However, information is required on the limits of ac-
ceptability of MDO results before involved engineers

Table 2 Needs and
Requirements for further
MDO development identified
by industry

Industry Requirement/limitations identified

Aerospace To take full advantage of composites with
unconstrained fiber orientation (not only 0, 90, 45)

Minimize manufacturing and tooling costs
Composite electromagnetic effect optimization
Full life cycle business case optimization
Incorporation of MDO methodology in multi-level

efficient strategy, rather than only single level
Design of truly innovative configurations (e.g. BWB)

Automotive Response surface and design of experiments methods
have difficulty handling the required number
of design variables

Design targets not sufficiently defined to allow the use
of MDO, design evolves as more aspects are factored
in over time

Exploit coupling of vehicle physics and manufacturing
via variables shared by both areas

Model verification and validation still immature
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make major design decisions based on the output of
such systems are made.

3.4 MDO in the workplace

The use and acceptance of MDO in the industry work-
place, and to a lesser degree in certain research in-
stitutes, hinges upon its functionality at three levels:
technical, organizational and cultural. Overcoming the
technical barrier is probably the easiest of the three
to understand and address. Most MDO ‘advocates’
and researchers work to prove MDO’s technical worth
on a day to day basis, many times at the expense of
overlooking the other two levels.

At the organizational level, integration that occurs in
very large engineering companies has been limited to
exchange of data files between departments (organiza-
tional units), while departments retain their disciplinary
foci. This data exchange facilitates Multidisciplinary
Design Analysis (MDA) but not true integration. True
integration could be demonstrated by the following
example (based on discussion with K. Bhatia of The
Boeing Company).

Suppose that during the design process, someone
wants to move the engines fifteen inches outboard to
improve flow into the engine nacelle. In a integrated
process, that desire should be communicated to the
computational infrastructure in a natural language, i.e.
“MOVE ENGINES 15 INCHES OUTBOARD,” to
trigger adjustments in the math models associated with
structures, aerodynamics, configuration (there might be
a flap size to be adjusted), flight mechanics and even
“relatively distant” component modification such as
vertical tail size, which may need to be adjusted due to
the engine out condition. The MDA with the models
adjusted would generate data informing the designer of
the effects of the change. As far as the designer is con-
cerned, the computing infrastructure would simply be
performing a background computation to proceed from
the natural language command to the new data output.

In engineering we are nowhere near the above capa-
bility. A note of progress made with video games in this
regard, however, is interesting. For example, in any one
of countless popular combat games the player controls
their character’s actions by direct console inputs. The
other characters on (and even off) the screen act guided
by analysis combined with a set of rules. This analysis is
surprisingly sophisticated. For example, CFD calcula-
tions to show the ripple effects when someone is thrown
into a pond of water, or enemy character responses that
differ every time the game is played. This ‘set of rules’
alludes to the use of Artificial Intelligence methods.

Returning to the airplane design, an additional path
might be to integrate the configuration group with the
disciplinary groups on a similar basis. For instance, fast
acting surrogate models would exist as players, where
the disciplinary teams hold the console and assume the
responsibility for creating and maintaining them, as
well as ensuring the process does not push them be-
yond the bounds of validity. If it does, they update the
surrogates. Each team must then have sufficient depth
and breadth to monitor, assess, and verify their domain
analyses.

The third level is cultural. People strive to live in
their most comfortable environment and tend to feel
happy there. Only a small minority is positively inclined
towards far reaching integration. Many fear loss of
control if their domain boundaries open up. Many are
concerned about job security. In management, there is
more openness to advanced ideas at the higher levels
but the middle level managers tend to operate by con-
sensus, busy meeting today’s commitments. They are
often averse to accepting additional risks. These issues
must be purposefully addressed by those in charge be-
fore successful large scale integration can reach the next
level. This will likely involve allowing an organization’s
engineers a higher failure rate while trying new things.

3.5 Relationship between academia, industry,
and government

Another roadblock to further development of MDO
that was discussed at the colloquium exists at the ed-
ucational level. There are several areas in need of
improvement. A primary issue is the lack of education
itself, not only at the university level, but also within
industry and research organizations.

First addressing the university level, the past 5 to
10 years have seen a relatively healthy growth in the
number of dedicated MDO courses taught to graduate
level students (although numbers are still small). How-
ever, many of these classes are taught as applied math
courses whose target audiences are limited in scope and
often do not include design engineers. Furthermore,
design engineers who do enroll in these courses often
receive the instruction too late, at a point in their grad-
uate studies after which they have already completed
undergraduate conceptual and preliminary design. Co-
incidentally, this late consideration of MDO also mir-
rors that which occurs in industry and research, where
MDO practices are often not fully realized in the early
stages of design or research development. Although
the reasons may be many, this likely also points to a
lack of education within and between these respective
institutes, where the engineers who can benefit most
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from MDO applications often are not aware of what is
available to them until after preliminary design phases
are complete.

Of further concern is the lack of high quality educa-
tional material available for use in studying and teach-
ing MDO. There are few, if any, undergraduate level
textbooks that deal either directly (textbooks dedicated
to MDO) or indirectly (textbook incorporating MDO
into its subject matter) with the topic of MDO as its
own field. A number of effective textbooks on design
optimization do exist (Papalambros and Wilde 2000),
but they typically only cover a subset of topics.

Additionally, an adequate number of real-world test
cases to which MDO methods and practices can be
applied in an academic setting are still missing from
the educational toolbox. This may partially stem from
a relationship between industry and academia that has
not yet reached its full potential. Often, the models
required for worthwhile MDO analysis, i.e. applying a
multi-level MDO method to a complete real-world air-
craft configuration, are commercially sensitive data that
industry does not want to release to external parties.
The fact that MDO is ‘multi-disciplinary’ also means
that the required models cannot be limited to just one
or two components, but rather must provide a rela-
tively comprehensive representation of the designed
system. All of this leads universities to depend on self-
developed test cases that are usually very simplified and
do not adequately represent the real-world complex-
ities of industrial applications, further strengthening
a barrier that can best be surmounted by continuing
government funding.

A central problem inherent to the successful appli-
cation of MDO is that it requires a broad range of
engineers, specifically discipline engineers, who under-
stand MDO concepts and methods. It is not enough to
integrate an MDO specialist into an organization and
expect this person to exercise the necessary discipline
expertise to correctly formulate the design problem,
make adjustments when necessary, and evaluate the
results at the end. The amount of information and
the complexity of the problems are simply too large.
To remedy this, there are several recommendations
that may improve the education of upcoming design
engineers such that the MDO mindset diffuses down to
even the lowest levels of the design organization.

The first of these is to move the initial instruction
of MDO concepts from the graduate level down to the
undergraduate level. This does not necessarily imply
that MDO should be taught as an independent course,
but rather that the fundamentals of MDO problem for-
mulation, available tools, concept of constraints, etc.,
should be taught alongside the more traditional design

course topics. The mechanics of the design space search
for a constrained minimum as well as development of
surrogate models tailored to the problem at hand is
now available in many commercial utility codes (see
Appendix). While understanding the way the above
search operates is important for successful use, the
user is relieved somewhat from the involvement with
mathematical detail and is left free to focus more on
the physics of the problem to be solved. This paradigm
change has a profound potential for changing the way
optimization is taught to engineering students, allowing
MDO instruction from a physical perspective rather
than a mathematical one, with less focus on the details
of the algorithms and more on their use.

A second recommendation is directed towards the
partnership between industry and academia. On the
side of academia, universities need to increase their
efforts to bring in more experience from seasoned engi-
neers. In this manner, they ensure students are exposed
to the difficulties of applying MDO in the real-world
and hopefully dissuade them from developing a “push-
button” attitude. Industry could help out academia
tremendously by working to provide: first, expertise in
the manner described above, and second, a suite of
test cases representative of real-world design problems
to be used in education. As academia is providing the
future workforce for industry, it would be in industry’s
own best interest to do so.

Finally, an effort is urged upon those universities
already engaged in the MDO field to work towards
developing useful instructional material on the subject
of MDO in general. Current efforts to familiarize one-
self with the topic usually require hours and hours of
searching though hundreds of technical papers on the
subject and putting it together later in a piecemeal
fashion. There still remains some disagreement about
whether the field is ready for an item such as an ‘MDO
Handbook,’ but most agree that a textbook, focusing
on MDO from an engineering perspective, is needed.
The various companies involved in producing MDO
software (see Table 4) could be of invaluable help
in this process as the majority of them have already
collected and written volumes worth of optimization
material in support of their own products.

4 Research agenda

The colloquium identified a number of areas that are
indeed promising research directions for the further
development of MDO. The contents of the papers, pre-
sentations, and discussions at the colloquium suggest
categorization of the anticipated MDO research and



MDO: assessment and direction for advancement—an opinion of one international group 25

Horizontal growth: “More of the Same”
Dream Growth: “Q

ualitatively New and Powerful Capabilitie
s”

V
er

tic
al

 G
ro

w
th

: 
“T

re
ad

 N
ew

 G
ro

un
ds

”

Fig. 6 MDO horizontal/vertical growth

development into two orthogonal directions that might
be labeled “Horizontal Growth” and “Vertical Growth”
(Fig. 6). The Horizontal Growth category encompasses
developments that improve on the MDO capabilities
already established toward greater dimensionalities of
the applications and extend the application spectrum,
e.g., to include the life cycle, economic factors, uncer-
tainty, and reliability. This leaves the Vertical Growth
label to identify developments that are conceptually
and qualitatively new, for instance optimization of en-
tire families of products for cumulative return on in-
vestment. The two orthogonal growth directions are
expected to symbiotically reinforce each other into a
“dream growth” delivering capabilities that are both
qualitatively new and powerful in terms of the size of
the problems they will solve.

4.1 Horizontal growth of MDO

4.1.1 Formal classification of MDO problems
(breadth vs. depth of coupling)

Classification of MDO (system optimization) problems
in terms of the coupling breadth and coupling strength
yields useful perspective on the utility of optimization
by decomposition. To see it, consider a system modeled
by a number of modules, each module generating its
own output Y from input Z, received from some other
module. The purpose of such system optimization by
decomposition is to make the dimensionally large op-
timization more tractable by breaking it into a set of
smaller tasks, each associated with a single module, plus
the coordination optimization at the system level to
restore the temporarily suspended couplings. The cou-
pling breadth and strength govern effectiveness of the

decomposition; hence, we need to quantify these quan-
tities as system characteristics by well-defined metrics.

The volume of data Z, i.e., the length of the vector
ZAB, where A and B designate receiver and sender
modules, respectively, is the metric for the A-to-B
coupling breadth. The derivatives ∂Yi / ∂Z j serve as
measures of the A-to-B coupling strength. Engineers
often favor the logarithmic derivative format, (∂Yi /
Yi) / (∂Z j / Z j) as one that clearly shows how much
Yi changes per unit change of Z j for better support
of judgment involved in design decisions. Calculation
of ∂Yi / ∂Z j may be accomplished by any of the well-
established sensitivity analysis techniques at the mod-
ule (disciplinary) level. Because the derivatives form
a matrix sized by the lengths of the vectors Y and
Z, the A-to-B coupling strength is not expressible by
a single measure, and there is no consensus how to
reduce information embedded in the matrix [∂Yi / ∂Z j]
to such a single measure. The average augmented with
upper and lower bounds or the standard deviation is
one of the obvious options. The concept of optimiza-
tion by decomposition for a particular system may be
examined in context of that system’s coupling breadth
and strength, the two metrics forming the horizontal
and vertical coordinate axes, respectively, as illustrated
qualitatively in Fig. 7.

The origin of that coordinate system corresponds to
a system whose modules are totally uncoupled whose
sensitivity analysis degenerates to a set of disjoint mod-
ule (disciplinary) sensitivity analyses. That situation,
that is seemingly happy because the system decomposi-
tion is given and requires no action, has the drawback of
being completely devoid of any inter-modular synergy
that may be beneficial when exploited intelligently by
the designer. On the other hand, systems at the NE
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Fig. 7 Quantifying utility of decomposition in terms of coupling
strength and breadth in the MDO process
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corner of the square couple so widely and strongly that
decomposition may not make the system optimization
task any easier because dimensionality of the system-
level coordination optimization may have dimensional-
ity equal to or exceeding the optimization of the same
system without decomposition. If modules A and B
couple that way, combining them into a “supermodule”
C = A ∪ B may be far better approach than decom-
position. The “supermodule” C may correspond to a
new discipline and aeroelasticity is a classic example of
that. At the NW corner we have systems that couple
strongly but narrowly. Optimization by decomposition
is most necessary and useful in that area and tech-
niques now available are most effective there. Finally,
at the SE corner we deal with systems whose coupling
is broad but weak. By sound engineering judgment
such coupling breadth may be reduced by neglecting
the selected small derivatives to make decomposition
effective. Of course, opportunities to exploit synergy
increase with the distance from the origin of the square
in Fig. 7.

We tend to think of the sensitivity data (gradients)
as search-guiding input to an optimization algorithm,
but the same data may be directly useful in support of
the designer’s decision making, especially if properly
visualized. In fact, these data may be regarded as a
quantification of the time-honored notion of the trade-
off. Having said that, one must not forget that in a
non-linear problem the gradient values computed for
an initial design may vary considerably as the opti-
mization progresses toward a constrained minimum. So
far, systematic studies to illustrate the extent of the
above variability in representative applications have
not been widely published and remain a potential issue
for research. Research topics that arise in conjunction
with the quantification of the system coupling breadth
and strength include:

1. Establishing standards for presentation of the cou-
pling strength and breadth for their best precision
and utility, considering their use in formal opti-
mization as well as in direct support of engineering
judgment.

2. Quantification of the above metrics in a statistically
meaningful sample of engineering systems, e.g., air-
craft, automobile, ship, etc., to determine averages
and bounds, and their distributions among typical
engineering systems, i.e., mapping typical engineer-
ing systems on the diagram in Fig. 7. Further char-
acterization of uncertainty propagation through the
coupled systems. All of this information would
help designers in exercising judgment in their
applications.

3. Extend the above (#2) to illustrate how the sensitiv-
ities (gradients) vary in the passage from an initial
to the optimal design.

4. Establishing guidelines for the cost and develop-
ment of disciplinary math models that are best
suited for application of MDO. These are not al-
ways necessarily the same as those needed for tra-
ditional, detailed disciplinary purposes.

5. Further development of the MDO algorithms high-
lighted in the Appendix of this paper.

Regarding the propagation of uncertainty men-
tioned in the second bullet above, one should acknowl-
edge the increasing role that uncertainty in design has
taken and its increasing acceptance by the engineering
community. While not specifically discussed at the 2006
workshop, there is a broad list of references on the
topic, a few of which are Oakley et al. (1998), Sues
and Cesare (2000), Yang and Gu (2003), Du and Chen
(2005), and Allaire and Willcox (2008).

4.1.2 Massively concurrent computing
(MCC) in MDO

Technologies for executing many computing and data
processing tasks simultaneously are rapidly become
available to engineers. They come in a number of
forms, e.g.

– Many processors in one unit. Two or four
processors are offered in desktop computers and
workstations.

– Clusters of inexpensive computers, each having ac-
cess to a permanent memory of its own as well as
to a mass storage shared with other computers. The
number of computers in a cluster ranges into the
thousands.

– Large number of processors in a single installa-
tion supported by local permanent memories and a
shared mass storage. The number of processors ex-
ceeds now 100,000 and is likely to exceed 1,000,000
soon.

– All of the above embedded in networks extending
continentally or globally.

– Reconfigurable computers of which the Field-
programmable Gate Array (FPGA) is an exam-
ple. Software provided with FPGA enables user
to transform it into a multi-processor computer
dynamically to fit the problem at hand.

The trend toward MCC is motivated by the ever
increasing need for computing speed combined with
gradual exhaustion of the single, silicon-based proces-
sor’s potential for further increase of its processing
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rate. This is typically limited by heat generation and
manufacturing cost of ever denser packaging of the
transistors on the chip. It appears that single, silicon-
based processor potential for a further speed-up is of
the order of 1,000. Combining it with a million proces-
sors in a supercomputer indicates acceleration of the
order of one billion relative to the computing speed
typically available today. To put this in a perspective,
computations that would require one month today
(therefore never attempted) could be accomplished in
milliseconds, i.e., practically instantaneously.

Computing at such speeds, if they actually could
be attained, would support the designer in even the
most complex tasks with the same effectiveness a word
processor with spelling and grammar check aids a let-
ter writer today. This would become “computing at
the speed of thought,” (Sobieszczanski-Sobieski and
Storaasli 2004) to mean that design work would be
paced by the engineer’s ability to think, formulate ‘what
if’ questions, and interpret the answers, rather than by
waiting for the answers. There would be an enormous
benefit to human creativity from uninterrupted train of
thought and rapid rate of answers.

However, the preceding paragraph opens with a
conditional clause because to utilize MCC technology
the solution algorithm computational speed must be
scalable with the number of processors. In engineering
applications that involve large sets of coupled equations
most of the present algorithms do not scale up that
way and that impedes severely the user’s acceptance
of MCC technology. The other impediment stems from
the variety of computer architectures, i.e., the ways in
which processors communicate, the various levels of
memories and mass storages, and I/O devices. These
architectures tend to be so diverse that a particular
problem solution running efficiently on one architec-
ture may be unacceptably inefficient or not even run at
all on another. This requires developers to tailor their
solutions to the particular architecture at hand, thus
driving up the cost.

In the long run, that means the existing solution al-
gorithms in engineering physics will have to be revised
and probably mostly replaced by new ones that are
intrinsically parallel, therefore, naturally scalable. The
cellular automata approach to fluid dynamics is one
example of such replacement. In the short and interim
outlook, coarse grained parallelism offers a way to
utilize MCC technology in many applications immedi-
ately. In the coarse-grained mode, existing code is repli-
cated over N processors unchanged, and executed with
different inputs to carry out N tasks in the time of one.

Furthermore, the introduction of MCC as a new in-
frastructure serving engineers ought to change the ‘util-

ity metric’ by which various analysis and optimization
methods are evaluated and compared. Traditionally,
numerical efficiency, roughly defined as the number
of arithmetical operations to solve the problem, was
such a metric. It was ‘natural’ when a single processor
performed the operations but it needs to be replaced in
a multiprocessor environment. A metric better suited to
gauge a numerical method utility in that environment is
the method’s capability to distribute numerical opera-
tions for concurrent execution over as many processors
as possible to compress the elapsed time needed to
obtain a solution, even at the price of increasing the
total number of operations in that compressed time.

Fortunately, MDO provides an abundance of op-
portunities for parallelism, e.g., finite difference tech-
niques for sensitivity analysis, genetic algorithms for
optimization, Design of Experiments applications, and
various decomposition schemes. This enables MDO ap-
plication to very large problems without waiting for the
engineering solution codes to be rewritten. Research
topics that arise in conjunction with MCC utilization
in MDO:

1. Identify engineering analysis applications that re-
quire such excessive elapsed computing times that,
despite the need, they are not attempted, e.g.,
full car crash simulation, unsteady aerodynamics
with high temperature and high altitude chemistry
effects.

2. Develop scalable solution algorithms for problems
selected from the above set, e.g., Finite Element
Analysis, or CFD.

3. Demonstrate a coarse-grained MDO application
using more than 10,000 processors, e.g., a full
optimization of an automobile including crash
constraints.

4. Negotiate with the computer science community a
single standard for presenting MCC machines to
developers of the solution algorithms in engineer-
ing physics. Considering that the above developers
are physicists and engineers, the purpose of the
standard would be to hide the details and diver-
sity of MCC architectures to enable creation of
MCC codes of permanent value. It would then be
a separate task for computer science specialists to
implement such codes written against the standard
on a particular architecture.

5. Numerical benchmarking and human-in-the-loop
experiments to measure the effectiveness of MDO
approaches and methods relative to current best
practices that use optimization at the component
level.
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6. Development of surrogate models adaptable to the
complexity of the design space to strike a proper
balance between the cost, driven by the number
of the DOE points, and the sparsity of the DOE
coverage of the design space. This is in recognition
of the danger that sparse coverage combined with
nonlinearity of the model may leave important fea-
tures of the model undetected, hiding between the
sparsely located DOE points.

4.2 Vertical growth of MDO

4.2.1 Creativity, cognition and flexibility

Optimization, whether disciplinary or MDO, begins
with laying down a concept that potentially may solve
the design problem at hand. This initialization is a start,
from which the design process begins moving towards
a final design. Thus, the optimization state-of-the-art
is limited to quantification of the initial design already
established qualitatively by a human creativity process
that, so far, is poorly understood and subject to research
in the field of the cognition science. In optimization, the
human creativity translates formally into a definition of
the design space and its requirements, whose parame-
terization determines at the outset what the proposed
design may potentially become and what it can never
transform to. Thus the design space acts as an enabler
and ultimate constraint at the same time (initialization
of an aircraft configuration to a monoplane, including a
variable for the wing position, produces a monoplane,
the wing high or low or in a mid-location, but never a
bi-plane). Likewise, mutations in Genetic Algorithms
merely explore at random the established design space
without transcending its definition, i.e., without adding
any new coordinate axes.

Finally, traditional MDO assumes that a system such
as an aircraft or automobile is design for fixed require-
ments. Some requirements, however, change over time
and can involve significant redesigns at a later time.
These redesigns can be expensive and move the system
away from its optimum configuration. MDO should
be applied to finding areas where flexibility can be
embedded to optimize systems for a range of future
scenarios (de Weck et al. 2004).

The obvious possibility of just adding new dimen-
sions to the design space after the search has begun
does not address the ultimate constraint issue because
the meaning of any new design variable is defined by
the way it enters the underlying mathematical model
and must originate in the mind of the designer. Gen-
eralization of the very concept of the design space
to enable qualitative transformation of that space by

adding, redefining, and removing design variables si-
multaneously with the numerical search would simulate
what to a competent designer comes naturally and
apparently is one of the intrinsic capabilities of the hu-
man mind. Lifting the optimization to that level would
advance it from its present role of a designer’s aid to the
role of a designer himself with profound consequences
that are difficult even to imagine today. The fact that
one sees only limited, if any, presentations at current
MDO conferences alluding to the above as an issue is
evidence that the optimization community has grown
accustomed to considering optimization as merely a
designer’s aid, and, on the other hand, it attests to the
difficulty of the problem.

The science of cognition that includes probing hu-
man inventiveness is still far from understanding the
underlying mental processes. Opinions vary between
extremes. One extreme view is that creativity is noth-
ing more than a random juxtaposition of the concepts
present in the immense base of common knowledge of
facts and relationships accumulated in every person’s
mind. Its pole opposite asserts that the human mind
is endowed with capabilities beyond what science can
explain. One does not need to choose between the
above opposites to recommend a pragmatic position
that the movement of optimization in general, and
MDO in particular, from being merely a designer’s aid
toward the ultimate new paradigm of simulating what
a designer really does will require a collaboration with
cognition science and its emerging companion science
of complexity (Gero 2006). Research topics suggested
by the above discussion:

1. Cognition and complexity sciences literature sur-
vey focused on determining whether any concepts
have already emerged that may be ready to be
exploited as connection points between the state-
of-the-art of optimization and these sciences.

2. Investigate whether it is possible to generalize the
concept of design mutation as practiced in GA to
include the design space redefinition reflected in
the underlying mathematical model.

3. Include the notion of time and future redesigns
in design optimization in order to allow systems
to be changed and reconfigured over time without
moving too far away from their static optima.

4.2.2 Designing and co-optimizing families of products
and Systems-of-Systems

Many systems are no longer designed as individual,
isolated products, but as part of a larger product or
system family. This requires including considerations



MDO: assessment and direction for advancement—an opinion of one international group 29

of modularity and especially commonality in the MDO
process. While much MDO work has been done in this
area in academia, little of it gets used in industrial prac-
tice. This is mainly so because commonality decisions
can only be made while taking into account their cost
impact and the influence on customer demand, in addi-
tion to the traditional technical performance evaluation
that MDO can provide (Willcox and Wakayama 2003).

Increasingly, vehicles operate as parts of larger net-
works and operational requirements include interoper-
ability with other vehicles. Examples include the design
of a sea base (naval logistics) among others (Wolf
2005). When applying MDO to System-of-Systems
problems the performance of an individual vehicle be-
comes subjugated to the performance of the overall
System-of-Systems (SoS) (Crossley and DeLaurentis
2006). In some cases, sub-optimality in one vehicle
would be deliberately accepted for the benefit of the
overall system. However, since the key feature of SoS
is that individual vehicles can still perform useful func-
tions independently (principle of functional indepen-
dence Maier 1999) this is a challenging problem. In
some cases existing bi-level methods might be extended
to multiple levels, in other cases entirely new ways of
thinking about the problem might have to be generated.
Research questions in this area encompass:

Optimizing which design variables, components and
modules to make common between variants of vehicles
or products in a family of systems that is tailored to spe-
cific applications. While much work has already been
done in this area, a stronger relationship between de-
sign variables and physical elements of form must be es-
tablished and economic factors must be accounted for.

Systems-of-Systems are an emerging application
for MDO where vehicles are treated as subsys-
tems of a larger ensemble of systems and vehicles
(Sobieszczanski-Sobieski and Storaasli 2004). One of
the challenges of System-of-Systems optimization that
must be addressed is that the boundaries and member-
ship in the SoS can vary dynamically over time.

4.2.3 The need to integrate manufacturing into MDO

There are very few references alluding to the title sub-
ject. However, one example, presented by R. J. Yang
of Ford Motor Co. at the 2006 European–U.S. MDO
Colloquium, did so by showing the effect structural
modification in the car body may have on both the car
performance and its manufacturing cost, hence, indi-
rectly on the return on investment. This case suggests
application of MDO to the product life cycle with Re-
turn on Investment (ROI) or Net Present Value (NPV)

as the objective, and encompassing both the vehicle
physics and its manufacturing process.

The uniqueness of Ford’s presentation at the col-
loquium is symptomatic of the prevailing practice
whereby the design of the vehicle manufacturing
process is to a large extent divided from the physics-
based design of the vehicle to be manufactured, with
only a limited amount of information crossing the di-
vide. That divide impedes maximization of ROI (NPV)
taken as a quantity representative of the highest-level
objectives of a commercial enterprise. A passenger
aircraft configuration design provides an example. Sim-
plifying the example to make the point, consider the
wing aspect ratio, AR, as a design variable typically
considered in the physics-based vehicle design phase.
That variable strongly affects the aircraft aerodynamic
efficiency hence it impacts, indirectly, the aircraft pro-
ductivity reflected in the cost per seat mile. In general,
larger AR (subject to constraints, of course) reduces
the seat mile cost potentially increasing the airline
profit, consequently enabling the aircraft builder to sell
the aircraft at a higher price. On the other hand, higher
aspect ratio wing of the same total area is generally
more expensive to make. The ROI depends, among
other factors, on the trade-off between the selling price,
operating cost and the manufacturing cost so it could
be maximized by an MDO process spanning the physic-
based vehicle design and the manufacturing and opera-
tions process design.

For such an MDO process to operate in context of
the above-simplified example, the mathematical model
must exist that relates the cost per seat mile to AR.
Similarly, a mathematical model is needed to assess the
manufacturing cost as a function of AR. Both models
exist in the current practice and MDO tools are applica-
ble on both sides of the physics/manufacturing divide.
What has not become a part of the practice as yet is
an MDO loop to manipulate AR as a variable active
on both sides of the trade-off involving both models
defined in the foregoing to reveal dependency of that
tradeoff on AR. Knowing that dependency would en-
able design of the vehicle and its manufacturing process
together toward maximum ROI or NPV. Research
topics that arise in conjunction with unification of the
physics-based vehicle design with design of its manu-
facturing process are as follows:

1. Select a design case of a vehicle in which manufac-
turing cost is sensitive to physical variables tradi-
tionally decided in the vehicle configuration design.

2. Identify mathematical models for the vehicle
physics and for the vehicle manufacturing, both
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models sharing as many design variables as
possible.

3. Apply an MDO system optimization including the
vehicle physics and manufacturing to demonstrate
benefit from such unified optimization for maximiz-
ing a quantity such as ROI and NPV, contrasting
the result with that obtained from disjoint treat-
ment of the vehicle physics and manufacturing.

5 Summary and concluding remarks

The paper is based on observations from the 2006
European–U.S. Multidisciplinary Design Optimization
Colloquium and outlines the authors’ opinion of the
state-of-the-art of Multidisciplinary Design Optimiza-
tion and its industrial applications rooted in major
previous developments, briefly reviewed for a historical
context. The MDO theory and means of implemen-
tation are examined as constituents of the state-of-
the-art, linked to principal commercial sources and
providers. The paper points to the technology of Mas-
sively Concurrent Computing, and its distributed vari-
ant, now becoming ubiquitous as a key enabler that
already begins to make possible what was impossible
before and is certain to open new areas of applications
in the future.

With the foregoing as a definition of a current MDO
infrastructure, a number of industrial applications are
brought up as lessons learned and indicators of limi-
tations. Since MDO developments require a relatively
high front-end cost and deferred benefit, these devel-
opments rely to a large extent on government spon-
sorships whose specific, recent, principal instances are
discussed, with references to crucially important partic-
ipation of the academic community in contributing re-
search and education of future MDO practitioners and
industry as a primary user and provider of challenges
and case studies.

Future developments of MDO are projected in two
orthogonal but mutually reinforcing directions: a hor-
izontal growth for more capability, spanning an ever
greater repertoire of applications using existing theory
and tools, and a vertical growth attacking qualitatively
new problems with innovative solutions to explore
new, uncharted territory for potentially even greater
benefits.

A key issue included in the vertical growth category
is the present limitation of MDO in particular and
optimization in general. Specifically, the confinement of
the search for optimal design to the space qualitatively
defined by the initial choice of the variable coordinate
axes and problem parameterization. The paper spec-

ulates that breaking out of that restricting mold will
require collaboration with cognitive science and studies
of the inner workings of human mind and its intrinsic
creativity, likely to extend far beyond MDO and its
engineering origin.

The third direction of future MDO developments,
regarded as a resultant of the above two, is a “dream
trend” that combines the increasing power of the well-
established approaches with the capability to solve
problems that heretofore remain beyond the MDO
theory and practice boundary.

Looking forward along the above axis, the paper
recommends specific research topics to the attention
of the research community, practitioners, and research
and development sponsors. Definitions of these specific
topics constitute the concrete, tangible product of the
paper.
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Appendix

A MDO theory and frameworks

The issue of system decomposition began to arise
over two decades ago, followed by the development
of several formal MDO methods each characterized
in large part by the ways and means for partitioning
the system optimization into sub-tasks and representing
the couplings (interactions) among the subtasks. It is
largely these decomposition frameworks’ approaches
that set MDO apart from straight applications of NLP
techniques in engineering design.

While numerous such methods have been intro-
duced, evolved, tested, and applied (some successfully
and some unsuccessfully) over the past two decades,
here we discuss only three of the more mainstream
developments and realize that there are others that
merit consideration as well. This short discussion in-
cludes: Bi-Level Integrated System Synthesis (BLISS),
referenced in Sobieszczanski-Sobieski et al. (2000) and
Sobieszczanski-Sobieski et al. (2003); Collaborative
Optimization (CO), referenced in Sobieski and Kroo
(2000) and Braun (1996); and a more recent decom-
position technique called Analytical Target Cascading
(ATC), referenced in Kim et al. (2003) and Kim (2001).
For the sake of completeness, Concurrent Subspace
Optimization (CSSO) is also briefly reviewed below. A
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summary of various similarities and differences be-
tween methods is shown in Table 3.

Bi-Level Integrated System Synthesis has been un-
der development at NASA Langley Research Center
since 1996 and has undergone various changes over
time. This algorithm uses an approximation technique
to represent a range of optimized subsystem or sub-
task designs, upon which the system-level optimizer
operates with the goal of minimizing an overall sys-
tem objective function. Although the choice of the
approximation technique is left up to the user, response
surfaces and Kriging are the two most commonly used
and tested. The connection between the system and
subsystem levels is preserved through the formation of
the subsystem objective function, f = w1Y1 + w2Y2 +
. . . + wiYi. Here, a range of weighting coefficients (wi)

are appended to each output (Yi) of each subsystem,
included as independent variables in the formation
of the approximation model, and then treated as de-
sign variables in the system level optimization. In this
manner, the system level optimizer essentially varies
the weighting coefficients to explore different design
attributes imparted by the subsystem optimizations.

Whereas BLISS uses weighting coefficients to direct
subsystem outputs such that they populate the entire
design space before reaching the system level optimiza-
tion, Collaborative Optimization uses target values of
the design and state variables, created at the system
level, to steer the outcome of subsystem optimizations
in a more step-wise manner. CO was originally devel-
oped at Stanford University in 1996 and, like BLISS,
has undergone various changes and improvements over
the past decade. The most recent variant is found in
Roth and Kroo (2008). The subsystems receive targets
for interdisciplinary parameters from the system level,
which they then try to match while converging to a
feasible design. The typical subsystem objective func-
tion, f = (XT,1− XSS,1)

2 + (XT,2− XSS,2)
2 + . . . + (XT,i−

XSS,i)
2, is formulated such the subsystem controlled

parameters (XSS,i) are allowed to deviate from the

target value (XT,i) in order to ensure a feasible design
is met. Optimum values of the subsystem objective
function are then returned to the system level where
new targets are set and the process continues until
convergence. Although the traditional CO algorithm
does not use approximation models, response surfaces
and other surrogate models have been used in several
cases to enhance certain aspects of the method.

Analytical Target Cascading, which was initially de-
veloped at the University of Michigan in 2001, is unique
in that it is not specifically intended as a competitor
to BLISS or CO but offers a very flexible, multi-level,
hierarchical approach to the decomposition problem
into which other formal MDO methods may possibly
be integrated. Although the mathematical formulations
of ATC and CO are similar, ATC was designed for
problems which are object or component aligned rather
than discipline aligned. Design targets cascade down
from the uppermost level, which may be the vehi-
cle level or even the management/enterprise level, to
each respective sublevel, typically defined by various
physical components of the design. Adjacent sublevels
then iterate successively to convergence in a pair-wise
fashion until the entire system converges. Achieving
convergence of the overall system is one of the key
challenges in successfully implementing ATC. Several
versions have been successfully implemented, the most
recent of which is found in Tosserams et al. (2008).

Concurrent Subspace Optimization (CSSO) was ini-
tially developed at NASA Langley Research Center in
1988 and subsequently expanded in a series of papers
from the University of Notre Dame Sobieszczanski-
Sobieski and Haftka (1997) into several variants so
diverse that they no longer constitute a single method.
In the initial version, the subspace objective functions
are formulated as the subspace contributions to the
overall system objective. The subspaces are responsi-
ble for meeting local constraints as well as constraints
from other subspaces, approximated through sensitiv-
ity derivatives obtained from the Global Sensitivity

Table 3 Overview of MDO decomposition frameworks

Method BLISS CO ATC CSSO

Trait
System-level analysis required? No No No Yes
Subspace sensitivity analysis required? No No No Yes
# of levels Two Two Multiple Two
Partitioned by: Disc. analys. Disc. analys. Object/component Disc. analys.
Subspace optimization influenced by targets? Yes, indirectlya Yes Yes No

Autonomous subspace optimizations? Yes Yes Yes Yes

aOf interesting note is that the BLISS subspace objective function could also be formulated as that of CO and ATC with the target
value taking the role of the weighting coefficient. However, in the BLISS method, slow convergence and possible non-feasibility of the
returned solution have led to the use of the weighting coefficients as the preferred alternative
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Table 4 Overview of
commercially available
software tools in support of
MDO

General purpose tools Embedded optimization Process integration tools

Excel (Microsoft) SolidWorks-Cosmos ModelCenter, CenterLink (Phoenix Int.)
Matlab (Mathworks) GENESIS (VRD) iSIGHT, FIPER (Engineous)
Mathematica (Wolfram) modeFRONTIER(Esteco)

Equations (GSE). Variants include the use of neural
nets, response surfaces, variable sharing between sub-
spaces, and numerous other refinements.

Software tools and MDO providers

Software tools now available commercially to sup-
port multidisciplinary design optimization have evolved
over the last two decades and can be classified into
three broad categories:

(a) general purpose optimization tools,
(b) embedded optimization tools, and
(c) dedicated process integration and design opti-

mization (PIDO) tools.

General purpose tools (Excel, Matlab, and Mathe-
matica) are general software environments and pro-
grams that can capture both the model of the system
that is to be optimized, as well as the optimizer in
the same environment. Typically, these tools are easy
to learn and use, but their computational performance
tends to break down for large problems. Also, these
tools do not easily integrate high-performance engi-
neering codes (such as CFD, FEM etc. . . ). For educa-
tional purposes, however, the general purpose tools are
the preferred choice due to their simplicity. The em-
bedded optimization tools are a recent trend, where ex-
isting engineering design and analysis tools (e.g. CAD
Solidworks) are starting to incorporate within them
an embedded optimization capability. While useful for
local optimization, this capability typically only benefits
one engineering discipline at a time. Finally, a small
industry has recently started to emerge in order to
provide a process integration and design optimization
capability (PIDO). The focus is on integrating a firm’s
natural design processes with multidisciplinary design
optimization. Popular tools operate at the individual
desktop level (ModelCenter, iSIGHT) or more recently
at the team or even at the enterprise level (CenterLink,
FIPER). Here the focus is on data management, con-
figuration control, workflow management and ease of
integration of disparate analysis codes.

Increasingly, firms are migrating from in-house
custom-made solutions to commercially available tools
such as the ones listed in Table 4.

References

Alexandrov N (2005) Editorial—multidisciplinary design opti-
mization. Optim Eng 6:5–7

Allaire D, Willcox K (2008) Surrogate modeling for uncertainty
assessment with application to aviation environmental sys-
tem models. In: 12th AIAA/ISSMO multidisciplinary analy-
sis and optimization conference, AIAA paper no 2008–5890.
Victoria, B.C

Balling RJ, Sobieszczanski-Sobieski J (1996) Optimization of
coupled systems: a critical overview of approaches. AIAA
J 34(1):6–17

Bartholomew P (1998) The role of MDO within aerospace
design and progress towards an MDO capability. In: 7th
AIAA/USAF/NASA/ISSMO symposium on multidiscipli-
nary analysis and optimization, AIAA paper no 98–4705.
St. Louis, MO

Barthelemy J, Haftka RT (1993) Approximation concepts for
optimum structural design—a review. Struct Optim 5(3):
129–144

Braun, R (1996) Collaborative optimization: an architecture for
large-scale distributed design. PhD thesis. Dept. of Aeronau-
tics and Astronautics, Stanford University

Crossley WA, DeLaurentis DA (2006) Methods for designing,
planning and operating systems of systems. In: Workshop
proceedings, Purdue University, AFOSR, 17–18 May

de Weck OL, Jones MB (2006) Isoperformance: analysis and
design of complex systems with desired outcomes. Syst Eng
9(1):45–61

de Weck OL, de Neufville R, Chaize M (2004) Staged deploy-
ment of communications satellite constellations in low earth
orbit. J Aero Comput Inform Comm 1(3):119–136

Du X, Chen W (2005) Collaborative reliability analysis under
the framework of multidisciplinary systems design—special
issue on multidisciplinary design optimization. Opt Eng
6(1):63–84

Fulton RE, Sobieszczanski-Sobieski J, Storaasli OJ, Landrum E,
Loendorf D (1974) Application of computer-aided aircraft
design in a multidisciplinary environment. SYNOPTIC J
Aircr 11(7):369–370

Gero JS (ed) (2006) Design computing and cognition ‘06, p 713.
Springer.

Giesing J, Barthelemy JM (1998) Summary of industry MDO
applications and needs. In: 7th AIAA/USAF/NASA/ISSMO
symposium on multidisciplinary analysis and optimization,
AIAA paper no 98–4737. St. Louis, MO

Kim HM (2001) Target cascading in optimal system design. PhD
dissertation, Department of Mechanical Engineering, Uni-
versity of Michigan, Ann Arbor, Michigan

Kim HM, Michelena NF, Papalambros PY, Jiang T (2003) Target
cascading in optimal system design. Trans ASME J Mech
Des 125(3):474–480

Maier MW (1999) Architecting principles for systems-of-systems.
Syst Eng 4(1):267–284

Messac A (1996) Physical programming: effective optimization
for computational design. AIAA J 34(1):149–158

Oakley DR, Sues RH, Rhodes GS (1998) Performance optimiza-
tion of multidisciplinary mechanical systems subject to un-
certainty. Probab Eng Mech 13(1):15–26



MDO: assessment and direction for advancement—an opinion of one international group 33

Papalambros PY, Wilde DJ (2000) Principles of optimal design—
modeling and computation, 2nd edn. Cambridge University
Press, Cambridge ISBN 0 521 62727 3

Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R,
Tucker PK (2005) Surrogate-based analysis and optimiza-
tion. Prog Aeronaut Sci 41:1–28

Ravachol M (2006) Multilevel multidisciplinary optimization of
aircraft. In: 2006 European–U.S. MDO colloquium pro-
ceedings, German Aerospace Center, Goettingen, Germany,
17–19 May

Roth B, Kroo I (2008) Enhanced collaborative optimiza-
tion: application to an analytic test problem and aircraft
design. In: 12th AIAA/ISSMO multidisciplinary analysis
and optimization conference, AIAA paper no 2008–5841.
Victoria, B.C

Schmit LA (1971) Structural synthesis 1959–1969: a decade of
progress. In: Gallagher RH, Yamada Y, Oden JT (eds) Re-
cent advances in matrix methods of structural analysis and
design, University of Alabama Press, Huntsville

Simpson T, Booker AJ, Ghosh D, Giunta AA, Koch PN,
Yang RJ (2004) Approximation methods in multidiscipli-
nary analysis and optimization: a panel discussion. Struct
Multidisc Optim 27(5):302–313

Smith RP, Eppinger SD (1997) Identifying controlling features of
engineering design iteration. Manag Sci 43(3):276–293

Sobieski IP, Kroo IM (2000) Collaborative optimization using
response surface estimation. AIAA J 38(10):1931–1938

Sobieszczanski-Sobieski J (1990) On the sensitivity of complex,
internally coupled systems. AIAA J 28(1):153–160

Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary
aerospace optimization: survey of recent developments.
Struct Optim 14(1):1–23

Sobieszczanski-Sobieski J, Storaasli O (2004) Computing at the
speed of thought. Aerosp Am 42(10):35–38

Sobieszczanski-Sobieski J, Barthelemy JF, Riley KM (1982) Sen-
sitivity of optimum solutions to problem parameters. AIAA
J 20:1291–1299

Sobieszczanski-Sobieski J, Agte JS, Sandusky RR (2000) Bilevel
integrated system synthesis. AIAA J 38(1):164–172

Sobieszczanski-Sobieski J, Altus T, Phillips M, Sandusky R
(2003) Bilevel integrated system synthesis for concurrent
and distributed processing (BLISS 2000). AIAA J 38(1):164–
172

Sues R, Cesare M (2000) An innovative framework for reliability-
based MDO. In: 41st AIAA/ASME/ASCE/AHS/ASC struc-
tures, structural dynamics, and materials conference and
exhibit, AIAA paper no 2000–1509. Atlanta, GA

Tedford NP, Martins J (2006) On the common structure of
MDO problems: a comparison of architectures. In: 11th
AIAA/ISSMO multidisciplinary analysis and optimization
conference, AIAA paper no 2006–7080. Portsmouth, VA

Tosserams S, Kokkolaras M, Etman LFP, Rooda JE (2008)
Extension of analytical target cascading using augmented
Lagrangian coordination for multidisciplinary design opti-
mization. In: 12th AIAA/ISSMO multidisciplinary analysis
and optimization conference, AIAA paper no 2008-5843.
Victoria, B.C

Van Keulen F, Haftka RT, Kim NH (2005) Review of options for
structural design sensitivity analysis. Part 1: linear systems.
Comput Methods Appl Mech Eng 194(30–33):3213–3243

Vanderplaats GN (1976) Automated optimization techniques for
aircraft synthesis. In: Proceedings, AIAA aircraft systems
and technology meeting, AIAA paper no 76–909. Dallas, TX

Willcox K, Peraire J (2002) Balanced model reduction via the
proper orthogonal decomposition. AIAA J 40(11):2323–
2330

Willcox K, Wakayama S (2003) Simultaneous optimization of a
multiple-aircraft family. AIAA J Aircraft 40(4):616–622

Wolf R (2005) Multiobjective collaborative optimization of sys-
tems of systems. SM thesis, Engineering Systems Division,
Massachusetts Institute of Technology

Yang RJ, Gu L (2003) Experience with approximate reliability-
based optimization methods. Struct Multidisc Optim
26(1–2):152–159


	MDO: assessment and direction for advancement---an opinion of one international group
	Abstract
	Abbreviations
	Introduction
	Background
	Successes and identified limitations
	Industrial successes
	Limitations identified by industry
	Model fidelity and validation/verification
	MDO in the workplace
	Relationship between academia, industry, and government

	Research agenda
	Horizontal growth of MDO
	Formal classification of MDO problems (breadth vs. depth of coupling)
	Massively concurrent computing (MCC) in MDO

	Vertical growth of MDO
	Creativity, cognition and flexibility
	Designing and co-optimizing families of products and Systems-of-Systems
	The need to integrate manufacturing into MDO


	Summary and concluding remarks
	Appendix
	A MDO theory and frameworks
	Software tools and MDO providers

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


